- Glossary

contacts

Contact Form

The contact mechanism of the Relay.

Number of Contact Poles

The number of contact circuits.

Rated Load

The rated load of the contact of the Relay, which determines the characteristic performance of the contact of the Relay, is expressed by the switching voltage and switching current.

Maximum Switching Voltage

The switching voltage of the Relay determines the characteristic performance of the contact of the Relay. Do not apply voltage that exceeds the maximum switching voltage of the Relay.

Carry Current

The value of the current which can be continuously applied to the Relay contacts without opening or closing them, which also allows the Relay to stay within the permissible temperature rise limit.

Maximum Switching (Contact) Current

A current which serves as a reference in determining the performance of the Relay contacts. This value will never exceed the carry current. When using a Relay, plan not to exceed this value.

Contact Resistance

The total resistance of the conductor, which includes specific resistivities, such as of the armature and terminal, and the resistance of the contacts. This value is determined by measuring the voltage drop across the contacts by the allowed test current shown in the table below.

Test Current

Rated current or switched current (A)	Test current (mA)
0.01 or higher but less than 0.1	10
0.1 or higher but less than 1	100
1 or higher	1,000

To measure the contact resistance, a milliohmmeter can also be used, although the accuracy drops slightly.

Contact Symbols

NO contact	NC contact	SPDT contact
\rightarrow -	$\rightarrow \sqrt{4}$	$\rightarrow \frac{1}{0} \rightarrow \frac{i}{4}$
Double-break NO contact	Double-break NO contact	Make-beforecontact contact
$\overline{0} 0$	$-\bar{y}^{4}$	$\sqrt{4}$
Wiper contact	Latching Relay contact	Ratchet relay contact
		$-\frac{8}{5 ;}$

Make-before-break Contact

A contact arrangement in which part of the switching section is shared between both an NO and an NC contact. When the Relay operates or releases, the contact that closes the circuit operates before the contact that opens the circuit releases. Thus both the contacts are closed momentarily at the same time.

Maximum Switching Power

The maximum capacity value of the load which can be switched without causing problems of material break-down and/or electrical overload. When using a Relay, be careful not to exceed this value. For example, when switching voltage V_{1} is known, max. switching current l_{1} can be obtained at the point of intersection on the characteristic curve "Maximum switching power" below. Conversely, max. switching voltage V_{1} can be operated if I_{1} is known.

Max. switching current $(11)=$

$$
\frac{\text { Maximum switching power }[\mathrm{W}(\mathrm{VA})]}{\text { Switching voltage }\left(\mathrm{V}_{1}\right)}
$$

For instance, if the switching voltage $=40 \mathrm{~V}$, the max. switching current $=2 \mathrm{~A}$ (see circled point on graph).

Electrical Endurance

The electrical endurance of the Relay can be determined from the "Electrical life" curve shown below, based on the rated switching current $\left(\mathrm{I}_{1}\right)$ obtained above.
For instance, the electrical endurance for the max. switching current of 2 A is slightly over 300,000 operations (see circled point on graph below).

However, with a DC load, it may become difficult to break a circuit of 48 V or more, due to arcing. Determine suitability of the Relay in actual usage testing. Correlation between the contact ratings is as shown below.
Coil

Single-stable		Double-winding		Single-winding latching
With pole	Without pole	4 terminals	3 terminals	

Coil Current (Applicable to AC-switching Type Only)

A current which flows through the coil when the rated voltage is applied to the coil at a temperature of $23^{\circ} \mathrm{C}$. The tolerance is $+15 \%,-20 \%$ unless otherwise specified.

Maximum Switching Power

Failure Rate

The failure rate indicates the lower limit of the switching power of a Relay. Such minute load levels are found in microelectronic circuits. This value may vary, depending on operating frequency, operating conditions, expected reliability level of the Relay, etc. It is always recommended to double-check Relay suitability under actual load conditions.
In this catalog, the failure rate of each Relay is indicated as a reference value. It indicates error level at a reliability level of 60\% (λ_{60}).
$\lambda_{60}=0.1 \times 10^{-6} /$ operation means that one error is presumed to occur per 10,000,000 operations at the reliability level of 60%.

Coil Voltage

A reference voltage applied to the coil when the Relay is used under the normal operation conditions. The following table lists the 100/110 VAC voltages

Applicable power source	Inscription on Relay	Denomination in catalog
100 V 50 Hz	100 VAC 60 Hz	100 VAC 60 Hz
100 VAC 50 Hz 100 VAC 60 Hz	100 VAC	100 VAC
100 VAC 50 Hz 100 VAC 60 Hz 100 VAC 60 Hz	100/110 VAC 60 Hz 100 VAC 50 Hz	100/(110) VAC
100 VAC 50 Hz 100 VAC 60 Hz 110 VAC 50 Hz 110 VAC 60 Hz	100/110 VAC	100/110 VAC

Power Consumption

The power (=rated voltage x rated current) consumed by the coil when the rated voltage is applied to it. A frequency of 60 Hz is assumed if the Relay is intended for AC operation.
The current flows through the coil when the rated voltage is applied to the coil at a temperature of $23^{\circ} \mathrm{C}$ and with a tolerance of $+15 \%$ and -20% unless otherwise specified.

Coil Resistance (Applicable to DC-switching Type Only)

The resistance of the coil measured at a temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$ unless otherwise specified. (The coil resistance of an AC-switching Relay may be given for reference when the coil inductance is specified.)

Must-release (Must-reset) Voltage

The threshold value of a voltage at which a Relay releases when the rated input voltage applied to the Relay coil in the operating state is decreased gradually.

Must-operate (Must-set) Voltage

The threshold value of a voltage at which a Relay operates when the input voltage applied to the Relay coil in the reset state is increased gradually.

Example: MY4 DC Models

The distributions of the must-operate voltage and the mustrelease voltage are shown in the following graph.
As shown in the graph, the Relay operates at voltages less than 80% of the rated voltage and releases at voltages greater than 10% of the rated voltage. Therefore, in this catalog, the mustoperate and must-release voltages are taken to be 80% max. and $10 \% \mathrm{~min}$. respectively of the rated voltage.

Percentage of rated voltage (\%)

Hot Start

The ratings set forth in the catalog or data sheet are measured at a coil temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified. However, some catalogs have the description "Hot start 85% (at $\mathrm{Ta}=$ $40^{\circ} \mathrm{C}$)". This means that the must-operate voltage when the Relay is operated after the rated current is consecutively applied to the coil at an ambient temperature of $40^{\circ} \mathrm{C}$ satisfies a maximum of 85% of the rated must-operate voltage.

Maximum Switching Voltage

The maximum value (or peak value, not continuous value) of permissible voltage fluctuations in the operating power supply of the Relay coil.

Minimum Pulse Width

The minimum width of the pulsating voltage required to set and reset a Latching Relay at a temperature of $23^{\circ} \mathrm{C}$.

Coil Inductance

With DC Relays, the coil inductance is obtained by adding the square waveform to a time constant. With AC Relays, it is the value at the rated frequency. In both cases, the values will be different depending on whether the Relay is in the set or the reset condition.

ELECTRICAL CHARACTERISTICS

Mechanical Life Expectancy

The life of a Relay when it is switched at the rated operating frequency, but without the rated load.

Electrical Endurance

The life of a Relay when it is switched at the rated operating frequency, with the rated load applied to its constants.

Bounce

Bouncing is the intermittent opening and closing between contacts caused by vibration or shock resulting from collision between the Relay's moving parts (poles and terminals) and the iron core and backstop, and collision between contacts.

Operate Bounce Time

The bounce time of the normally open (NO) contact of a Relay when the rated coil voltage is applied to the Relay coil, at an ambient temperature of $23^{\circ} \mathrm{C}$.

Operate Time

The time that elapses after power is applied to a Relay coil until the NO contacts have closed, at an ambient temperature of $23^{\circ} \mathrm{C}$. Bounce time is not included. For the Relays having an operate time of less than 10 ms , the mean (reference) value of its operate time is specified as follows:

Operate time	5 ms max. (mean value: approx. 2.3 ms)

Release Bounce Time

The bounce time of the normally closed (NC) contact of a Relay when the coil is deenergized at an ambient temperature of $23^{\circ} \mathrm{C}$.

Release Time

The time that elapses between the moment a Relay coil is deenergized until the NC contacts have closed, at an ambient temperature of $23^{\circ} \mathrm{C}$. (With a Relay having SPST-NO or DPST-NO contacts, this is the time that elapses until the NO contacts have operated under the same condition.) Bounce time is not included. For Relays having a release time of less than 10 ms , the mean (reference) value of its release time is specified as follows:

Release time	5 ms max. (mean value: approx. 2.3 ms)

Reset Time (Applicable to Latching Relays Only)

The time that elapses from the moment a Relay coil is deenergized until the NC contacts have closed, at an ambient temperature of $23^{\circ} \mathrm{C}$. (With a Relay having SPST-NO or DPST-NO contacts, this is the time that elapses until the NO contacts have operated under the same condition.) Bounce time is not included. For Relays having an operate time of less than 10 ms , the mean (reference) value of its operate time is specified as follows:

\section*{| Reset time | 5 ms max. (mean value: approx. 2.3 ms) |
| :--- | :--- |}

Set Time (Applicable to Latching Relays Only)

The time that elapses after power is applied to a Relay coil until the NO contacts have closed, at an ambient temperature or $23^{\circ} \mathrm{C}$. Bounce time is not included. For the Relays having an operate time of less than 10 ms , the mean (reference) value of its operate time is specified as follows:

Dielectric Strength

The critical value which a dielectric can withstand without rupturing, when a high-tension voltage is applied for 1 minute between the following points:
Between coil and contact
Between contacts of different polarity
Between contacts of same polarity
Between set coil and reset coil
Between current-carrying metal parts and ground terminal
Note that normally a leakage current of 3 mA is detected; however, a leakage current of 1 mA or 10 mA may be detected on occasion.

Impulse Withstand Voltage

The critical value which the Relay can withstand when the voltage surges momentarily due to lightning, switching an inductive load, etc. The surge waveform which has a pulse width of $+1.2 \times 50 \mathrm{~ms}$ is shown below:

Insulation Resistance

The resistance between an electric circuit (such as the contacts and coil), and grounded, non-conductive metal parts (such as the core), or the resistance between the contacts. The measured values are as follows

Rated insulation voltage	Measured value
60 V max.	250 V
61 V min.	500 V

Switching Frequency

The frequency or intervals at which the Relay continuously operates and releases, satisfying the rated mechanical and electrical service lives.

Shock Resistance

The shock resistance of a Relay is divided into two categories:
Destruction, which quantifies the characteristic change of, or damage to, the Relay due to considerably large shocks which may develop during the transportation or mounting of the Relay, and malfunction durability, which quantifies the malfunction of the Relay while it is in operation.

Stray Capacitance

The capacitance measured between terminals at an ambient temperature of $23^{\circ} \mathrm{C}$ and a frequency of 1 kHz .

Vibration Resistance

The vibration resistance of a Relay is divided into two categories: Destruction, which quantifies the characteristic changes of, or damage to, the Relay due to considerably large vibrations which may develop during the transportation or mounting of the Relay, and Malfunction durability, which quantifies the malfunction of the Relay due to vibrations while it is in operation.
$\alpha=0.002 f^{2} \mathrm{~A}$
α : Acceleration of vibration
f: Frequency
A: Double amplitude

OPERATING

Single Stable Relays (Standard Type)

These are Relays in which the contacts switch in response to the energization and deenergization of the coil and do not have any special functions.

Terminal Arrangement/Internal Connections

(Bottom view)

Double-winding Latching Relays

These are Relays that have a set coil and a reset coil, and have a latching mechanism enabling the set or reset condition to be locked.

Terminal Arrangement/Internal Connections
(Bottom view)

S: set coil
R : reset coil

Single-winding Latching Relays

These are Relays that have one coil, and switch between the set and reset condition according to the polarity of the applied voltage, and have a latching mechanism enabling this status to be locked.

Terminal Arrangement/Internal Connections
(Bottom view)

S: set coil
R: reset coil

Stepping Relays

These are Relays in which the contacts shift ON or OFF sequentially with each coil input pulse.

Ratchet Relays

These are Relays in which the contacts alternately turn ON and OFF, or sequentially operate, when a pulse signal is input.

Precautions

General handling

- To maintain initial performance, be careful not to drop the Relay or subject it to shock.
- The case is so constructed that it will not come off with normal handling. To maintain initial performance, do not allow the case to come off.
- Use the Relay in a dry atmosphere containing little dust, SO_{2}, $\mathrm{H}_{2} \mathrm{~S}$, and organic gases.
- Ensure that the voltage applied to the coil is not applied continuously in excess of the maximum permissible voltage.
- With DC-operated Relays that have a built-in diode or a built-in operation indication lamp, do not reverse the polarity connections when the polarity of the coil is specified.
- Do not use the Relay at a voltage or current greater than the specified values.
- Ensure that the ambient operating temperature does not exceed the specified value.
- With General-purpose Relays, leaving or using the Relay for a long time in an atmosphere of hydrogen sulfide gas or high temperature and high humidity will lead to the formation of a sulfide film or an oxidation film on the surface of the contact. In Miniature Relays, the contact force is weak and so the film cannot be destroyed mechanically. Also, with the very small loads, destruction of the film is not possible by arcing and so there will be contact instability and the occurrence of problems in performance and function. For these reasons, Fully Sealed Relays or Hermetically Sealed Relays should be used in atmospheres of harmful gases (such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{NH}_{3}$, and Cl_{2}), humidity, and dust.
- The contact ratings of Relays approved by standards and the general ratings of the Relays could be different.
When combining Relays with various types of Sockets, check the contact ratings of the Relays before use.

OPERATING COILS

AC-operated Relays

The power supply used to operate AC-operated Relays is almost always at the commercial frequency (50 or 60 Hz). Standard voltages are $6,12,24,48,100$, and 200 VAC. Because of this, when the voltage is other than a standard voltage, the Relay will be a special-order item and so inconvenience may arise with respect to price, delivery period, and stability of performance. Consequently, a Standard-voltage Relay should be selected if at all possible.
In AC-operated Relays, there is a resistance loss of the shading coil, an overcurrent loss of the magnetic circuit, a hysteresis loss, as well as other losses. The coil input also increases and so in general it is normal for the temperature rise to be higher than in a DC-operated Relay. Also, at voltages less than the must-operate voltage (i.e., the minimum operation voltage), a vibration is produced which necessitates that attention be paid to the fluctuation of the power supply voltage.
For example, when the power supply voltage drops at the time of motor stating, the Relay will be reset while vibrating and the contacts will burn, fuse, or the self holding will go out of place. In AC-operated Relays, there is an inrush current. (When the armature is in a separated condition, the impedance is low and a current flows that is larger than the rated current; when the armature is in the closed condition, the impedance increases and a current flows which is of the rated value.) When a large number of Relays are used connected in series, this factor must be taken into account together with the power consumption.

DC-operated Relays

The power supply used to operate DC-operated Relays may have voltage as a standard or it may have current as a standard. When voltage is the standard, the rated coil voltages include $5,6,12,24$, 48 , and 100 VDC. When current is the standard, the rated current in mA is listed in the catalog.
In DC-operated Relays, when the Relay is used in an application where it is operated at some limit value, either voltage or current, the current applied to the coil will gradually increase or decrease. It is important to note that this may delay the movement of the contacts resulting in failure to meet the specified control capacity. The coil resistance value of a DC-operated Relay may change by approximately 0.4% per ${ }^{\circ} \mathrm{C}$ due to changes in the ambient temperature and the heat radiated by the Relay itself. Therefore, it is important to note that increases in temperature will be accompanied by higher must-operate and must-release voltages.

Power Supply Capacity

The fluctuation of the power supply voltage over a long period will of course affect Relay operation, but momentary fluctuations will also be the cause of incorrect Relay operation.
For example, when a large solenoid, Relay, motor, heater, or other device is operated from the same power supply as the one that operates the Relay, or when a large number of Relays are used, if the power supply does not have sufficient capacity when these devices are operated simultaneously, the voltage drop may prevent the Relay from operating. On the other hand, when the voltage drop is estimated and the voltage increased accordingly, if the voltage is applied to the Relay when there is no voltage drop, this will cause heating of the coil.
Provide leeway in the capacity of the power supply and keep the voltage within the switching voltage range of the Relay.

Lower Limit Value of the Must-operate Voltage

Use of Relays at high temperatures or rise of coil temperature due to a continuous flow of current through the coil will result in an increase in coil resistance which means the must-operate voltage will also increase. This matter requires attention be paid to determining a lower limit value of the operation power supply voltage. The following example and explanation should be referred to when designing the power supply.
Note: Even though the rating is a voltage rating (as is the rating for all Standard Relays), the Relay should be thought of as being current operated.

Catalog values for model MY

Rated voltage: 24 VDC , coil resistance: 650Ω, must-operate voltage: 80% or less of rated voltage, at a coil temperature of $23^{\circ} \mathrm{C}$.
A rated current of $36.9 \mathrm{~mA}(24 \mathrm{VDC} / 650 \mathrm{~W}=36.9 \mathrm{~mA})$ flows through this Relay, which operates at 80% or less of this value i.e., at 29.5 mA or less $(36.9 \mathrm{~mA} \times 0.8=29.5 \mathrm{~mA})$. When the present coil temperature rises by $10^{\circ} \mathrm{C}$, the coil resistance will be 676 W ($650 \Omega \times 1.04=676 \mathrm{~W}$). To have the must-operate current of 29.5 mA flow in this condition, it will be necessary to apply a voltage of $19.94 \mathrm{~V}(29.5 \mathrm{~mA} \times 676 \Omega=19.94 \mathrm{v})$. This voltage (which is the must-operate voltage when the coil temperature is $33^{\circ} \mathrm{C}\left(23^{\circ} \mathrm{C}\right.$ $\left.+10^{\circ} \mathrm{C}\right)$, is $83.1 \%(19.94 / 24=83.1 \%)$ of the rated voltage which represents an increase compared to when the coil temperature was $23^{\circ} \mathrm{C}$.

Classification		Control Panel Relay							
Model		MY - New model			LY				
Features		Versatile relay, ideal for power and sequence control applications, meets many other application requirements.			Compact, general-purpose 15-A and 10-A relays ideal for many applications.				
Appearance									
Contact Ratings	Contact Form	DPDT	4PDT		SPDT	DPDT		3PDT	4PDT
	Mechanism	Single	Single	Bifurcated	Single		Bifurcted	Single	
	Material	Ag	Au-clad+Ag		Agalloy		Ag	Ag-alloy	
	Rated Load* (Resistive load)	5 A at 250 VAC/ 30 VDC	3 A at $250 \mathrm{VAC} /$ 30 VDC		15 A at 110 VAC/ 24 VDC	10 A at 110 VAC/ 24 VDC	5 A at 110 VAC/ 24 VDC	10 A at $110 \mathrm{VAC} /$ 24 VDC	
	Max. Switching Current	10 A	5 A		15 A	10 A	7 A	10 A	
	Failure rate (mA) (reference value)	1 mA at 5 VDC	$\begin{aligned} & 1 \mathrm{~mA} \text { at } \\ & 1 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 100 \mu \mathrm{~A} \text { at } \\ & 1 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~mA} \\ & \text { at } 5 \mathrm{VDC} \end{aligned}$		10 mA at 5 VDC	100 mA at 5 VDC	
Coil ratings	Rated Voltage	6 to 100/110 VDC 6 to 220/240 VAC			6 to 100/110 VDC 6 to 220/240 VAC				
	Power Consumption (approx.)	$\begin{aligned} & 0.9 \text { W (DC) } \\ & 0.9 \text { to } 1.2 \mathrm{VA} \text { (AC) } \end{aligned}$			$\begin{aligned} & 0.9 \mathrm{~W}(\mathrm{DC}) \\ & 0.9 \text { to } 1.2 \mathrm{VA}(\mathrm{AC}) \end{aligned}$			$\begin{aligned} & 1.4 \mathrm{~W} \\ & \text { (DC) } \\ & 1.6 \text { to } 2.0 \\ & \text { VA (AC) } \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5 \mathrm{~W} \\ \text { (DC) } \\ 1.95 \text { to } 2.5 \\ \text { VA (AC) } \end{array}$
Endurance	Mechanical	$\begin{aligned} & \text { 50,000,000 (AC), } \\ & \text { 100,000,000 (DC) } \end{aligned}$		20,000,000	$\begin{aligned} & \text { 50,000,000 (AC), } \\ & 100,000,000 \text { (DC) } \end{aligned}$				
	Electrical	500,000	200,000	100,000	200,000	500,000		200,000	
Dialectric strength	Between coil and contacts	2,000 VAC for 1 min .			2,000 VAC for 1 min.				
	Between contacts of different polarity	2,000 VAC for 1 min.			-	2,000 VAC for 1 min.			
	Between contacts of same polarity	1,000 VAC for 1 min.			1,000 VAC for 1 min.				
	Between set and reset coils	-			-				
Ambient temperature (operating)		$-55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			$-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$			$-25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	
Functions		- Mechanical indicator - Test button - LED indicator - Arc barriers - Built-in diode - Built-in CR			- LED indicator • Test button- Built-in diode- Built-in CR				
Sealing		Cased (unsealed)			Cased (unsealed)				
Technical Construction**		! \ddagger (ask sales office)			[5 \}				
Approved Standards		NㅓN(S)LR (N)							
Page		487			500				

* Numbers in parentheses apply to cased (unsealed) types.

Classification		Control Panel Relay			Built-in Relay		
Model		G2RS			G7L		
Features		Reliable and unique test button models now available. High switching power (1 pole: 10 A). Highly functional socket also available. Environmentally friendly.			Multi-pole power relay that withstands a momentary voltage drop. Wide range of applications with $100-\mathrm{V}$ and $200-\mathrm{V}$ coils. Both screw terminals and PCB terminals are available.		
Appearance							
Contact Ratings	Contact Form	SPDT	DPDT		SPST-NO	DPST-NO	SPST-NO, DPST-NO
	Mechanism	Single	Single		Double-break		
	Material	Ag-alloy			Ag-alloy		
	Rated Load* (Resistive load)	10A at 250 VAC/ 30 VDC	5A at 250 VAC/ 30 VDC		$\begin{aligned} & 30 \mathrm{~A} \text { at } \\ & 220 \mathrm{VAC} \end{aligned}$	$\begin{array}{\|l\|} \hline 25 \mathrm{~A} \text { at } \\ 220 \mathrm{VAC} \end{array}$	$\begin{aligned} & 20 \mathrm{~A} \text { at } \\ & 220 \mathrm{VAC} \end{aligned}$
	Max. Switching Current	10 A	5 A		30 A	25 A	20 A
	Failure rate (mA) (reference value)	$\begin{aligned} & 100 \mathrm{~mA} \\ & \text { at } 5 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mA} \\ & \text { at } 5 \mathrm{VDC} \end{aligned}$		100 mA at 5 VDC		
Coil ratings	Rated Voltage	6 to 48 VDC 24 to 240 VAC			6 to 100 VDC 12 to 200/240 VAC		
	Power Consumption (approx.)	$\begin{aligned} & 0.53 \mathrm{~W}(\mathrm{DC}) \\ & 0.9 \mathrm{VA}(\mathrm{AC}) \end{aligned}$			$\begin{aligned} & 1.9 \mathrm{~W}(\mathrm{DC}) \\ & 1.7 \text { to } 2.5 \mathrm{VA}(\mathrm{AC}) \end{aligned}$		
Endurance	Mechanical	$\begin{aligned} & \text { 10,000,000 (AC), } \\ & 20,000,000(\mathrm{DC}) \end{aligned}$			1,000,000		
	Electrical	100,000			100,000		
Dialectric strength	Between coil and contacts	5,000 VAC for 1 min.			4,000 VAC for 1 min .		
	Between contacts of different polarity	-		$3,000 \mathrm{VAC}$ for 1 min.	-	2,000 VAC for 1 min. (DPST-NO only)	
	Between contacts of same polarity	1,000 VAC for 1 min.			2,000 VAC for 1 min.		
	Between set and reset coils	-		-	-		
Ambient temperature (operating)		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			$-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$		
Functions		- LED indicator - Test button - Built-in diode			- Test button (excluding P models)		
Sealing		Cased (unsealed)			Cased (unsealed)		
Technical Construction**		T				苗	\boxed{J}
Approved Standards					-15		
Page		513			523		

* Numbers in parentheses apply to cased (unsealed) types.

Classification		Built-in Relay	Built-in Relay
Model		G7J	G7SA
Features		Multi-pole power relay that withstands a momentary voltage drop. Wide range of applications with $100-\mathrm{V}$ and $200-\mathrm{V}$ coils. Both screw terminals and PCB terminals are available.	Safety relay that conforms to EN standard. Forcibly guided contacts (En50205 Class A). Suitable for safety circuits in press machinery, machine tools and other production machinery
Appearance			
Contact Ratings	Contact Form	4PST-NO, 3PST-NO/SPST-NC, DPST-NO/DPST-NC	4PST-NO/DPST-NC, 3PST-NO/3PST-NC
	Mechanism	Double-break	Single
	Material	Ag-alloy	Ag + Au plating
	Rated Load* (Resistive load)	25 A at 220 VAC, 100,000 operations min. 25 A at 30 VDC, 100,000 operations min. (For normally closed contacts, 8 A at $220 \mathrm{VAC}, 8 \mathrm{~A}$ at 30 VDC$)$	3 A at $240 \mathrm{VAC} / 24 \mathrm{VDC}$, 100,000 operations min
	Max. Switching Current	25 A	6 A
	Failure rate (mA) (reference value)	100 mA at 24 VDC	10 mA at 5 VDC
Coil ratings	Rated Voltage	12 to 100 VDC 24 to 200/240 VAC	24 VDC
	Power Consumption	Approx. 2 W (DC) Approx. 1.8 to $2.6 \mathrm{VA}(\mathrm{AC})$	0.8 W
Endurance	Mechanical	1,000,000	10,000,000
	Electrical	100,000	100,000
Dialectric strength	Between coil and contacts	4,000 VAC for 1 min .	2,500 VAC for 1 min .
	Between contacts of different polarity	4,000 VAC for 1 min .	2,500 VAC for 1 min .
	Between contacts of same polarity	2,000 VAC for 1 min .	1,500 VAC for 1 min.
	Between set and reset coils	-	-
Ambient temperature (operating)		$-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Functions		- With test button	- Forced guided contacts
Sealing		Cased	Cased
Technical Construction**		$\prod \text { 首 自 }$	\square
Approved Standards		-1. 1 NDE) EN, IEC	
Page		538	557

* Numbers in parentheses apply to cased (unsealed) types.

Versatile and Function-filled Miniature Power Relay for Sequence Control and Power Switching Applications

- Many variations possible through a selection of operation indicators (mechanical and LED indicators), test button, built-in diode and CR (surge suppression), bifurcated contacts, etc.
- Arc barrier standard on 4-pole Relays.
- Dielectric strength: 2,000 VAC (coil to contact)

■ Environment-friendly cadmium-free contacts.
■ Safety standard approvals obtained.

- Wide range of Sockets (PY, PYF Series) and optional parts are available.
■ Max. Switching Current: 2-pole: 10 A , 4-pole: 5 A
- Built-in mechanical operation indicator.
- Provided with nameplate.

Ordering Information
 - Relays

Standard Coil Polarity

Type	Contact form	Plug-in socket/Solder terminals		Without LED indicator
		Standard with LED indicator	With LED indicator and test button	
Standard	DPDT	MY2N	MY2IN	MY2
	4PDT	MY4N	MY4IN	MY4
	4PDT (bifurcated)	MY4ZN	MY4ZIN	MY4Z
With built-in diode (DC only)	DPDT	MY2N-D2	MY2IN-D2	-
	4PDT	MY4N-D2	MY4IN-D2	-
	4PDT (bifurcated)	MY4ZN-D2	MY4ZIN-D2	-
With built-in CR (220/240 VAC, 110/120 VAC only)	DPDT	MY2N-CR	MY2IN-CR	-
	4PDT	MY4N-CR	MY4IN-CR	-
	4PDT (bifurcated)	MY4ZN-CR	MY4ZIN-CR	-

Reverse Coil Polarity

Type	Contact form		Plug-in socket/Solder terminals	
		With LED indicator	With LED indicator and test button	
Standard (DC only)	DPDT	MY2N1	MY2IN1	
	4PDT	MY4N1	MY4IN1	
	4PDT (bifurcated)	MY4ZN1	MY4ZIN1	
	DPDT	MY2N1-D2	MY2IN1-D2	
	4PDT	MY4N1-D2	MY4IN1-D2	
	4PDT (bifurcated)	MY4ZN1-D2	MY4ZIN1-D2	

Note: When ordering, add the rated coil voltage and "(s)" to the model number. Rated coil voltages are given in the coil ratings table.
Example: MY2 6VAC (S)

[^0]
General Purpose Relay - MY (New Model)

■ Accessories (Order Separately)

Sockets

Poles	Front-mounting Socket (DINtrack/screw mounting)	Back-mounting Socket				
		Solder terminals		Wire-wrap Terminals		PCB terminals
		Without clip	With clip	Without clip	With clip	
2	$\begin{aligned} & \hline \text { PYF08A-E } \\ & \text { PYF08A-N } \end{aligned}$	PY08	PY08-Y1	PY08QN PYF08QN2	$\begin{aligned} & \hline \text { PY08QN-Y1 } \\ & \text { PY08QN2-Y1 } \end{aligned}$	PY08-02
4	$\begin{aligned} & \text { PYF14A-E } \\ & \text { PYF14A-N } \end{aligned}$	PY14	PY14-Y1	PY14QN PY14QN2	$\begin{aligned} & \text { PY14QN2-Y1 } \\ & \text { PY14QN-Y1 } \end{aligned}$	PY14-02

Socket Hold-down Clip Pairing

Relay Type	Poles	Front-connecting Socket (DIN-track/screw mounting)		Back-connecting Socket			
				Solder/Wire-wrap terminals		PCB terminals	
		Socket	Clip	Socket	Clip	Socket	Clip
Without 2-pole test button	2	PYF08A-E PYF08A-N	PYC-A1	PY08(QN)	$\begin{aligned} & \text { PYC-P } \\ & \text { PYC-P2 } \end{aligned}$	PY08-02	$\begin{aligned} & \text { PYC-P } \\ & \text { PYC-P2 } \end{aligned}$
	4	$\begin{aligned} & \text { PYF14A-E } \\ & \text { PYF14A-N } \end{aligned}$		PY14(QN)		PY14-02	
2-pole test button	2	PYF08A-E PYF08A-N	PYC-E1	PY08(QN)	PYC-P2	PY08-02	PYC-P2

Mounting Plates for Sockets

Socket model	For 1 Socket	For 18 Sockets	For 36 Sockets
PY08, PY08QN(2), PY14, PY14QN(2)	PYP-1	PYP-18	PYP-36

Note: PYP-18 and PYP-36 can be cut into any desired length in accordance with the number of Sockets.

Track and Accessories

Supporting Track (length $=\mathbf{5 0 0} \mathbf{m m}$)	PFP-50N
Supporting Track (length $\boldsymbol{= 1 , 0 0 0} \mathbf{m m}$)	PFP-100N, PFP-100N2
End Plate	PFP-M
Spacer	PFP-S

Specifications

Coil Ratings

Rated voltage		Rated current		CoilResistance	$\begin{gathered} \text { Coil Induction } \\ \text { (reference value) } \end{gathered}$		Must operate voltage	Must release voltage	Max. voltage	Power consumption (approx.)
		50 Hz	60 Hz		Arm. OFF ${ }^{\text {Arm. ON }}$		\% of rated voltage			
AC	$6 \mathrm{~V}^{*}$	214.1 mA	183 mA	12.2Ω	0.04 H	0.08 H	80\% max.	30\% min.	110\%	$\begin{aligned} & \hline 1.0 \mathrm{to} \\ & 1.2 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	12 V	106.5 mA	91 mA	46Ω	0.17 H	0.33 H				
	24 V	53.8 mA	46 mA	180Ω	0.69 H	1.30 H				
	48/50 V*	$\begin{aligned} & \hline 24.7 / \\ & 25.7 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l\|} \hline 21.1 / \\ 22.0 \mathrm{~mA} \end{array}$	788Ω	3.22 H	5.66 H				
	110/120 V	9.9/10.8 mA	$8.4 / 9.2 \mathrm{~mA}$	4,430 Ω	19.20 H	32.1 H				$\begin{aligned} & 0.9 \text { to } \\ & 1.1 \mathrm{VA} \end{aligned}$
	220/240 V	4.8/5.3 mA	4.2/4.6 mA	18,790 Ω	83.50 H	136.4 H				(60 Hz)
DC	$6 \mathrm{~V}^{*}$	151 mA		39.8Ω	0.17 H	0.33 H		10\% min.		0.9 W
	12 V	75 mA		160Ω	0.73 H	1.37 H				
	24 V	37.7 mA		636Ω	3.20 H	5.72 H				
	48 V *	18.8 mA		2,560 Ω	10.60 H	21.0 H				
	100/110 V	9.0/9.9 mA		11,100 Ω	45.60 H	86.2 H				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for rated currents and $\pm 15 \%$ for DC coil resistance.
2. Performance characteristic data are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. AC coil resistance and impedance are provided as reference values (at 60 Hz).
4. Power consumption drop was measured for the above data. When driving transistors, check leakage current and connect a bleeder resistor if required.
5. Rated voltage denoted by " \star " will be manufactured upon request. Ask your OMRON representative.

Item	2-pole		4-pole		4-pole (bifurcated)	
	Resistive load $(\cos \varnothing=1)$	$\begin{aligned} & \text { Inductive load } \\ & \text { (cos }=0.4 \text {, } \\ & \mathrm{L} / \mathrm{R}=7 \mathrm{~ms} \text {) } \end{aligned}$	Resistive load ($\cos \varnothing=1$)	$\begin{aligned} & \text { Inductive load } \\ & \text { (cos }=0.4, \\ & \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms} \text {) } \end{aligned}$	Resistive load ($\cos \varnothing=1$)	$\begin{aligned} & \text { Inductive load } \\ & \text { (cos }=0.4, \\ & \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms} \text {) } \end{aligned}$
Rated Load	5A, 250 VAC 5A, 30 VDC	$\begin{array}{\|l\|} \hline 2 \mathrm{~A}, 250 \mathrm{VAC} \\ 2 \mathrm{~A}, 30 \mathrm{VDC} \\ \hline \end{array}$	$\begin{aligned} & 3 \mathrm{~A}, 250 \mathrm{VAC} \\ & 3 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \hline 0.8 \mathrm{~A}, 250 \mathrm{VAC} \\ & 1.5 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{~A}, 250 \mathrm{VAC} \\ & 3 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$0.8 \mathrm{~A}, 250$ VAC $1.5 \mathrm{~A}, 30 \mathrm{VDC}$
Carry Current	10 A (see note)		5 A (see note)			
Max. switching voltage	$\begin{array}{\|l\|} \hline 250 \text { VAC } \\ 125 \text { VDC } \\ \hline \end{array}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$			
Max. switching current	10 A		5 A			
Max. switching power	$\begin{aligned} & \text { 2,500 VA } \\ & 300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 1,250 \mathrm{VA} \\ & 300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 1,250 \mathrm{VA} \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 500 \mathrm{VA} \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 1,250 VA } \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 500 \mathrm{VA} \\ 150 \mathrm{~W} \\ \hline \end{array}$
Failure rate (reference value)	$5 \mathrm{VDC}, 1 \mathrm{~mA}$		$1 \mathrm{VDC}, 1 \mathrm{~mA}$		$1 \mathrm{VDC}, 100 \mathrm{~mA}$	

Characteristics

Item	All relays
Contact resistance	$100 \mathrm{~m} \Omega$ max.
Operate time	20 ms max.
Release time	20 ms max.
Max. operating frequency	Mechanical: 18,000 operations $/ \mathrm{hr}$ Electrical: 1,800 operations $/ \mathrm{hr}$ (under rated load)
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC$)$
Dielectric strength	$2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for $1.0 \mathrm{~min}(1,000 \mathrm{VAC}$ between contacts of same polarity)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ single amplitude $(1.0 \mathrm{~mm}$ double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ single amplitude $(1.0 \mathrm{~mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	See the following table
Ambient temperature	Operating: $-55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5% to 85%
Weight	Approx. 35 g

Note: The values given above are initial values.
Endurance Characteristics

Pole	Mechanical life (at 18,000 operations/hr)	Electrical life (at 18,000 operations/hr under rated load)
2-pole	AC: $50,000,000$ operations min.	500,000 operations min.
	DC: $100,000,000$ operations min.	200,000 operations min.
4-pole	20,000,000 operations min.	100,000 operations min.

Approved Standards

VDE Recognitions (File No. 112467UG, IEC 255, VDE 0435)

No. of poles	Coil ratings	Contact ratings	Operations
2	$\begin{aligned} & 6,12,24,48 / 50,100 / 110 \\ & 110 / 120,200 / 220, \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A}, 250 \mathrm{VAC}(\cos \theta=1) \\ & 10 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{~L} / \mathrm{R}=0 \mathrm{~ms}) \end{aligned}$	10×10^{3}
4	$\begin{aligned} & 6,12,24,48,100 / 110, \\ & 125 \text { VDC } \end{aligned}$	5 A, 250 VAC $(\cos \varnothing=1)$ $5 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$	$\begin{aligned} & 100 \times 10^{3} \\ & \text { MY4Z AC; } 50 \times 10^{3} \end{aligned}$

UL508 Recognitions (File No. 41515)

No. of poles	Coil ratings	Contact ratings	Operations
2	6 to 240 VAC 6 to 125 VDC	10 A, 30 VDC (General purpose) 10 A, 250 VAC (General purpose)	6×10^{3}
4		5 A, 250 VAC (General purpose) 5 A, 30 VDC (General purpose)	

CSA C22.2 No. 14 Listings (File No. LR31928)

No. of poles	Coil ratings	Contact ratings	Operations
2	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A}, 30 \mathrm{VDC} \\ & 10 \mathrm{~A}, 250 \mathrm{VAC} \end{aligned}$	6×10^{3}
4		5 A, 250 VAC (Same polarity) 5 A, 30 VDC (Same polarity)	

490

IMQ (File No. EN013 to 016)

No. of poles	Coil ratings	Contact ratings	Operations
2	$6,12,24,48 / 50,100 / 110$	$10 \mathrm{~A}, 30 \mathrm{VDC}$	10×10^{3}
	$110 / 120,200 / 220$,	$10 \mathrm{~A}, 250 \mathrm{VAC}$	
	$220 / 240 \mathrm{VAC}$	$5 \mathrm{~A}, 250 \mathrm{VAC}$	100×10^{3}
4	$6,12,24,48,100 / 110$,	$5 \mathrm{~A}, 30 \mathrm{VDC}$	$\mathrm{MY} 4 \mathrm{AC} ; 50 \times 10^{3}$

LR Recognitions (File No. 98/10014)

No. of poles	Coil ratings	Contact ratings	Operations
2	6 to 240 VAC 6 to 125 VDC	10 A, 250 VAC (Resistive) 2 A, 250 VAC (PF0.4) $10 \mathrm{~A}, 30$ VDC (Resistive) $2 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	50×10^{3}
4		5 A, 250 VAC (Resistive) 0.8 A, 250 VAC (PF0.4) 5 A, 30 VDC (Resistive) $1.5 \mathrm{~A}, 30 \mathrm{VDC}$ (L/R=7 ms)	50×10^{3}

SEV Listings (File No. 99.5 50902.01)

No. of poles	Coil ratings	Contact ratings	Operations
2	6 to 240 VAC 6 to 125 VDC	$\begin{aligned} & 10 \mathrm{~A}, 250 \mathrm{VAC} \\ & 10 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	10×10^{3}
4		$\begin{aligned} & 5 \mathrm{~A}, 250 \mathrm{VAC} \\ & 5 \mathrm{~A}, 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 100 \times 10^{3} \\ & \text { MY4Z AC; } 50 \times 10^{3} \end{aligned}$

Engineering Data

■ Maximum Switching Power

MY4, MY4Z

- Endurance

MY2 (Resistive Loads)

MY4 (Resistive Loads)

MY4Z (Resistive Loads)

MY2 (Inductive Loads)

MY4 (Inductive Loads)

MY4Z (Inductive Loads)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

2-Pole Models

1.2-dia. x 2.2 long holes

4-Pole Models

Models with Test Button

- Terminal Arrangement/Internal Connections (Bottom View)

MY2

MY2N-CR/MY2IN-CR (AC Models Only)

MY4(Z)N/MY4(Z)IN (AC Models)

MY4(Z)

MY2N/MY2IN
(DC Models)

MY2N1/MY2IN1 (DC Models Only)

MY2N-D2/MY2IN-D2
(DC Models Only)

MY2N1-D2/MY2IN1-D2
(DC Models Only)

MY4(Z)N-D/MY4(Z)IN-D2 (DC Models Only)

MY4(Z)N-CR/MY4(Z)IN-CR (AC Models Only)

MY4(Z)N1/MY4(Z)IN (DC Models Only)

MY4(Z)N1-D2/MY4(Z)IN1-D2 (DC Models Only)

Note: The DC models have polarity.

Socket for MY

Track-mounted (DIN Track) Socket Conforms to VDE 0106, Part 100

- Snap into position along continuous sections of any mounting track.
■ Facilitates sheet metal design by standardized mounting dimensions.
Design with sufficient dielectric separation between terminals eliminates the need of any insulating sheet.

Safety Standards for Sockets

Model	Standards	File No.
PYF08A-E, PYF08A-N PYF14A-E, PYF14A-N	UL508	E87929
	CSA22.2	LR31928

Back-connecting Sockets

Specifications

Item	Pole	Model	Carry current	Dielectric withstand voltage	Insulation resistance (see note 2)
Track-mounted Socket	2	PYF08A-E	7 A	2,000 VAC, 1 min	1,000 M 2 min .
		PYF08A-N (see note 3)	7 A (see note 4)		
	4	PYF14A-E	5 A		
		PYF14A-N (see note 3)	5 A (see note 4)		
Back-connecting Socket	2	PY08(-Y1)	7 A	1,500 VAC, 1 min	$100 \mathrm{M} \Omega \mathrm{min}$.
		PY08QN(-Y1)			
		PY08-02			
	4	PY14(-Y1)	3 A		
		PY14QN(-Y1)			
		PY14-02			

Note: 1. The values given above are initial values.
2. The values for insulation resistance were measured at 500 V at the same place as the dielectric strength.
3. The maximum operating ambient temperature for the PYF08A-N and PYF14A-N is $55^{\circ} \mathrm{C}$.
4. When using the PYF08A-N or PYF14A-N at an operating ambient temperature exceeding $40^{\circ} \mathrm{C}$, reduce the current to 60%.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Socket	Dimensions	Terminal arrangement/ Internal connections (top view)	Mounting holes
PYF08A-E			Note: Track mounting is also possible. Refer to page 61 for supporting tracks.
PYF08A-N			Note: Track mounting is also possible. Refer to page 61 for supporting tracks.
PYF14A-E			Two, M3, M4, or 4,5-dia. holes (TOP VIEW) Note: Track mounting is also possible. Refer to page 61 for supporting tracks.
PYF14A-N			Two, 4.5 dia. or M4 Note: Track mounting is also possible. Refer to page 61 for supporting tracks.

Socket	Dimensions	Terminal arrangement/ Internal connections (bottom view)	Mounting holes
	Note: The PY08-Y1 includes sections indicated by dotted lines.		
	Note: The PY08QN-Y1 includes sections indicated by dotted lines.	1 4 6 8 0 0 13 0	1.$21.4+2.2$ -2
PY08-02			
	Note: The PY14-Y1 includes sections indicated by dotted lines.		
PY14QN/ PY14QN-Y1	Note: The PY14QN-Y1 includes sections indicated by dotted lines.		
PY14-02			

■ Hold-down Clips

PYC-E1
(2 pcs per set)

PYC-P

PYC-P2

■ Mounting Plates for Back-connecting Sockets

PYP-1

$\mathrm{t}=1.6$
PYP-18

PYP-36

- Tracks and Accessories

Supporting Tracks

PFP-50N/PFP-100N

Note: The figure in the parentheses is for PFP-50N.

End Plate

PFP-M

Spacer

PFP-S

A Miniature Power Relay

■ Equipped with arc barrier.

- Dielectric strength: 2,000 V.

■ Built-in diode models added to the LY Series.

- Single-pole and double-pole models are applicable to operating coils with ratings of 100/110 VAC, 110/120 VAC, 200/220 VAC, 220/240 VAC, or 100/110 VDC).
- Three-pole and four-pole models are applicable to operating coils with ratings of 100/110 VAC, 200/220 VAC, or 100/110 VDC).

Ordering Information

- Open Relays

Type	Contact form	Plug-in/solder terminals	Plug-in/solder terminals with LED indicator 5	PCB terminals	Upper-mounting plug-in/solder terminals
Standard	SPDT	LY1	LY1N	LY1-0	LY1F
	DPDT	LY2	LY2N	LY2-0	LY2F
	DPDT (bifurcated)	LY2Z	LY2ZN	LY2Z-0	LY2ZF
	3PDT	LY3	LY3N	LY3-0	LY3F
	4PDT	LY4	LY4N	LY4-0	LY4F
With built-in diode (DC only)	SPDT	LY1-D	LY1N-D2	-	-
	DPDT	LY2-D	LY2N-D2	-	-
	DPDT (bifurcated)	LY2Z-D	LY2ZN-D2	-	-
	3PDT	LY3-D	-	-	-
	4PDT	LY4-D	LY4N-D2	-	-
With built-in CR (AC only)	SPDT	-	-	-	-
	DPDT	LY2-CR	LY2N-CR	-	-
	DPDT (bifurcated)	LY2Z-CR	LY2ZN-CR	-	-

Note: 1. When ordering, add the rated coil voltage to the model number. Rated coil voltages are given in the coil ratings table.
Example: LY2, 6 VAC

> - Rated coil voltage
2. Relays with \#187 quick connect terminals are also available with SPDT and DPDT contact. Ask your OMRON representative for details.
3. SEV models are standard Relays excluding DPDT (bifurcated) models.
4. VDE- or LR- qualifying Relays must be specified when ordering.

■ Accessories (Order Separately)

Sockets

Poles	Front-connecting Socket	Back-connecting Socket		
	DIN track/screw terminals	Plug-in/solder terminals	Wrapping terminals	PCB terminals
1 or 2	PTF08A-E, PTF08A	PT08	PT08QN	PT08-0
3	PTF11A	PT11	PT11QN	PT11-0
4	PTF14A-E, PTF14A	PT14	PT14QN	PT14-0

Note: 1. For PTF08-E and PTF14A-E, see "Track Mounted Socket."
2. PTF \square A (-E) Sockets have met UL and CSA standards: UL 508/CSA C22.2.

Mounting Plates for Sockets

Socket model	For 1 Socket	For 10 Sockets	For 12 Sockets	For 18 Sockets
PT08 PT08QN	PYP-1	-	-	PYP-18
PT11 PT11QN	PTP-1-3	-	PTP-12	-
PT14 PT14QN	PTP-1	PTP-10	-	-

Socket-Hold-down Clip Pairings

Relay type	Poles	Front-connecting Sockets		Back-connecting Sockets	
		Socket model	Clip model	Socket model	Clip model
Standard, bifurcated contacts operation indicator, built-in diode	1,2	PTF08A-E, PTF08A	PYC-A1	PT08(QN), PT08-0	PYC-P
	3	PTF11A		PT11(QN), PT11-0	
	4	PTF14A-E, PTF14A		PT14(QN), PT14-0	
CR Circuit	2	PTF08A-E, PTF08A	Y92H-3	PT08(QN), PT08-0	PYC-1

Specifications

\square Coil Rating

Single- and Double-pole Relays

Rated voltage		Rated current		Coil Resistance	Coil Induction (reference value)		Must operate	Must release	Max. voltage	Power consumption
		50 Hz	60 Hz		Arm. OFF	Arm. ON	\% of rated voltage			
AC	6 V	214.1 mA	183 mA	12.2Ω	0.04 H	0.08 H	80\% max.	30\% min.	110\%	$\begin{aligned} & \hline 1.0 \mathrm{to} \\ & 1.2 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	12 V	106.5 mA	91 mA	46Ω	0.17 H	0.33 H				
	24 V	53.8 mA	46 mA	180Ω	0.69 H	1.30 H				
	50 V	25.7 mA	22 mA	$788 \Omega \mathrm{~W}$	3.22 H	5.66 H				
	100/110 V	11.7/12.9mA	10/11 mA	3,750 Ω	14.54 H	24.6 H				$\begin{aligned} & 0.9 \text { to } 1 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	110/120 V	9.9/10.8 mA	$8.4 / 9.2 \mathrm{~mA}$	$4,430 \Omega$	19.20 H	32.1 H				
	200/220 V	6.2/6.8 mA	$5.3 / 5.8 \mathrm{~mA}$	12,950 Ω	54.75 H	94.07 H				
	220/240 V	4.8/5.3 mA	4.2/4.6 mA	18,790 Ω	83.50 H	136.40 H				
DC	6 V	150 mA		40Ω	0.16 H	0.33 H		10\% min.		0.9 W
	12 V	75 mA		160Ω	0.73 H	1.37 H				
	24 V	36.9 mA		650Ω	3.20 H	5.72 H				
	48 V	18.5 mA		2,600 Ω	10.6 H	21.0 H				
	100/110 V	9.1/10 mA		11,000 Ω	45.6 H	86.2 H				

Note: See notes on the bottom of next page.

Three-pole Relays

Rated voltage		Rated current		Coil Resistance	Coil Induction (reference value)		Must operate voltageMust release voltageMax. voltage			Power consumption (approx.)
		50 Hz	60 Hz		Arm. OFF ${ }^{\text {Arm. ON }}$		\% of rated voltage			
AC	6 V	310 mA	270 mA	6.7Ω	0.03 H	0.05 H	80\% max.	30\% min.	110\%	$\begin{aligned} & \hline 1.6 \text { to } \\ & 2.0 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	12 V	159 mA	134 mA	24Ω	0.12 H	0.21 H				
	24 V	80 mA	67 mA	100Ω	0.44 H	0.79 H				
	50 V	38 mA	33 mA	410Ω	2.24 H	3.87 H				
	100/110 V	14.1/16 mA	$12.4 / 13.7 \mathrm{~mA}$	2,300 Ω	10.5 H	18.5 H				
	200/220 V	9.0/10.0 mA	7.7/8.5 mA	8,650 Ω	34.8 H	59.5 H				
DC	6 V	234 mA		25.7Ω	0.11 H	0.21 H		10\% min.		1.4 W
	12 V	112 mA		107Ω	0.45 H	0.98 H				
	24 V	58.6 mA		410Ω	1.89 H	3.87 H				
	48 V	28.2 mA		1,700 Ω	8.53 H	13.9 H				
	100/110 V	12.7/13 mA		8,500 Ω	29.6 H	54.3 H				

Note: See notes under next table.

Four-pole Relays

Rated voltage		Rated current		Coil Resistance	Coil Induction (reference value)		Must operate	Must release	Max. voltage	Power consumption
		50 Hz	60 Hz		Arm. OFF	Arm. ON	\% of rated voltage			
AC	6 V	386 mA	330 mA	5Ω	0.02 H	0.04 H	80\% max.	30\% min.	110\%	$\begin{aligned} & \hline 1.95 \text { to } \\ & 2.5 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	12 V	199 mA	170 mA	20Ω	0.10 H	0.17 H				
	24 V	93.6 mA	80 mA	78Ω	0.38 H	0.67 H				
	50 V	46.8 mA	40 mA	350Ω	1.74 H	2.88 H				
	100/110 V	$22.5 / 25.5 \mathrm{~mA}$	19/21.8 mA	1,600 Ω	10.5 H	17.3 H				
	200/220 V	11.5/13.1 mA	$9.8 / 11.2 \mathrm{~mA}$	6,700 Ω	33.1 H	57.9 H				
DC	6 V	240 mA		25Ω	0.09 H	0.21 H		10\% min.		1.5 W
	12 V	120 mA		100Ω	0.39 H	0.84 H				
	24 V	69 mA		350Ω	1.41 H	2.91 H				
	48 V	30 mA		1,600 Ω	6.39 H	13.6 H				
	100/110 V	15/15.9 mA		6,900 Ω	32 H	63.7 H				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for rated currents and $\pm 15 \%$ for DC coil resistance.
2. Performance characteristic data are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. AC coil resistance and impedance are provided as reference values (at 60 Hz).
4. Power consumption drop was measured for the above data. When driving transistors, check leakage current and connect a bleeder resistor if required.

- Contact Rating

Relay	Single Contact				Bifurcated contacts	
	1-pole		2-, 3- or 4-pole			
Load	Resistive load $(\cos \varnothing=1)$	Inductive load ($\cos \sigma=0.4$, $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load $(\cos \varnothing=1)$	Inductive load $(\cos \varnothing=0.4,$ $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load $(\cos \varnothing=1)$	Inductive load ($\cos \sigma=0.4$, L/R = 7 ms)
Rated Load	110 VAC 15 A 24 VDC 15 A	110 VAC 10 A 24 VDC 7 A	110 VAC 10 A 24 VDC 10 A	110 VAC 7.5 A 24 VDC 5 A	110 VAC 5A 24 VDC 5 A	$\begin{aligned} & 110 \mathrm{VAC} 4 \mathrm{~A} \\ & 24 \mathrm{VDC} 4 \mathrm{~A} \end{aligned}$
Rated Carry Current	15 A		10 A		7 A	
Max. switching voltage	$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$	
Max. switching current	15 A		10 A		7 A	
Max. switching power	$\begin{aligned} & 1,700 \mathrm{VA} \\ & 360 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,100 \mathrm{VA} \\ & 170 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,100 \mathrm{VA} \\ & 240 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 825 \mathrm{VA} \\ & 120 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 550 \mathrm{VA} \\ & 120 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 440 \mathrm{VA} \\ & 100 \mathrm{~W} \end{aligned}$
Failure rate (reference value)*	$100 \mathrm{~mA}, 5 \mathrm{VDC}$		$100 \mathrm{~mA}, 5 \mathrm{VDC}$		$100 \mathrm{~mA}, 5 \mathrm{VDC}$	

${ }^{*}$ Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

Characteristics

Item	All except Relays with bifurcated contacts
Contact resistance	$50 \mathrm{~m} \Omega \mathrm{max}$.
Operate time	25 ms max.
Release time	25 ms max.
Max. operating frequency with bifurcated contacts	
Insulation resistance	Mechanical: 18,000 operations $/ \mathrm{hr}$ Electrical: 1,800 operations $/ \mathrm{hr}$ (under rated load)
Dielectric strength	$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)

Note: 1. The values given above are initial values
2. The upper limit of $40^{\circ} \mathrm{C}$ for some Relays is because of the relationship between diode junction temperature and the element used.

- Endurance Under Real Loads (reference only)

LY1

Rated voltage	Load type	Conditions	Operating frequency	Electrical life
100 VAC	AC motor	400 W, 100 VAC single-phase with 35-A inrush current, 7-A current flow	ON for 10 s , OFF for 50 s	50,000 operations
	AC lamp	300 W, 100 VAC with 51-A inrush current, 3-A current flow	ON for 5 s , OFF for 55 s	100,000 operations
		500 W, 100 VAC with 78-A inrush current, 5-A current flow		25,000 operations
	Capacitor $(2,000 \mu \mathrm{~F})$ (2,000 $\mu \mathrm{F}$)	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 6 s	100,000 operations
	AC solenoid	50 VA with $2.5-\mathrm{A}$ inrush current, 0.25-A current flow	ON for 1 s , OFF for 2 s	1,500,000 operations
		100 VA with 5-A inrush current, $0.5-\mathrm{A}$ current flow		800,000 operations

LY2

Rated voltage	Load type	Conditions	Operating frequency	Electrical life
100 VAC	AC motor	200 W, 100 VAC single-phase with 25-A inrush current, 5-A current flow	ON for 10 s , OFF for 50 s	200,000 operations
	AC lamp	300 W, 100 VAC with 51-A inrush current, 3-A current flow	ON for 5 s , OFF for 55 s	80,000 operations
	$\begin{array}{\|l} \hline \text { Capacitor } \\ (2,000 \mu \mathrm{~F}) \end{array}$	24 VDC with $50-\mathrm{A}$ inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	10,000 operations
		24 VDC with 20-A inrush current, 1-A current flow		150,000 operations
	AC solenoid	50 VA with $2.5-\mathrm{A}$ inrush current, 0.25-A current flow	ON for 1 s , OFF for 2 s	1,000,000 operations
		100 VA with 5-A inrush current, $0.5-\mathrm{A}$ current flow		500,000 operations

LY4

Rated voltage	Load type	Conditions	Operating frequency	Electrical life
100 VAC	AC motor	200 W, 200 VAC triple-phase with 5-A inrush current, 1-A current flow	ON for 10 s , OFF for 50 s	500,000 operations
		$750 \mathrm{~W}, 200$ VAC triple-phase with 18-A inrush current, 3.5 A current flow		70,000 operations
	AC lamp	300 W, 100 VAC with 51-A inrush current, 3-A current flow	ON for 5 s , OFF for 55 s	50,000 operations
	Capacitor$(2,000 \mu \mathrm{~F})$$(2,000 \mu \mathrm{~F})$	24 VDC with $50-\mathrm{A}$ inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	5,000 operations
		24 VDC with 20-A inrush current, 1-A current flow	ON for 1 s , OFF for 2 s	200,000 operations
	AC solenoid	50 VA with 2.5-A inrush current, $0.25-\mathrm{A}$ current flow	ON for 1 s , OFF for 2 s	1,000,000 operations
		100 VA with 5-A inrush current, 0.5-A current flow		500,000 operations

- Approved Standards

UL 508 Recognitions (File No. 41643)

No. of poles	Coil ratings	Contact ratings	Operations
1	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	15 A, 30 VDC (Resistive) 15 A, 240 VAC (General use) TV-5, 120 VAC 1/2 HP, 120 VAC	6×10^{3}
			25×10^{3}
2		15 A, 28 VDC (Resistive) $15 \mathrm{~A}, 120$ VAC (Resistive)	6×10^{3}
		$\begin{aligned} & \text { 1/2 HP, } 120 \text { VAC } \\ & \text { TV-3, } 120 \text { VAC } \end{aligned}$	25×10^{3}
3 and 4		$10 \mathrm{~A}, 30$ VDC (Resistive) $10 \mathrm{~A}, 240$ VAC (General use) $1 / 3$ HP, 240 VAC	6×10^{3}

CSA 22.2 No. 14 Listings (File No. LR31928)

No. of poles	Coil ratings	Contact ratings	Operations
1	$\begin{aligned} & 6 \text { to } 240 \mathrm{VAC} \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	15 A, 30 VDC (Resistive)	6×10^{3}
		$\begin{aligned} & 1 / 2 \mathrm{HP}, 120 \text { VAC } \\ & \text { TV-5, } 120 \mathrm{VAC} \end{aligned}$	25×10^{3}
2		$15 \mathrm{~A}, 30$ VDC (Resistive) $15 \mathrm{~A}, 120$ VAC (Resistive) 1/2 HP, 120 VAC TV-3, 120 VAC	6×10^{3}
3 and 4		$10 \mathrm{~A}, 30$ VDC (Resistive) $10 \mathrm{~A}, 240$ VAC (General use)	

SEV Listings (File No. D3,31/137)

No. of poles	Coil ratings	Contact ratings	Operations
1	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	$\begin{aligned} & 15 \mathrm{~A}, 24 \mathrm{VDC} \\ & 15 \mathrm{~A}, 220 \mathrm{VAC} \end{aligned}$	6×10^{3}
2 to 4		$\begin{aligned} & 10 \mathrm{~A}, 24 \mathrm{VDC} \\ & 10 \mathrm{~A}, 220 \mathrm{VAC} \end{aligned}$	

TÜV (File No. R9251226) (IEC255)

No. of poles	Coil ratings	Contact ratings	Operations
1 to 4	6 to 125 VDC	LY1, LY1-FD	15 A 110 VAC $(\cos \varnothing=1)$
	6 to 240 VAC	100×10^{3}	
			LY2, 110 VAC $(\cos \varnothing=0.4)$

VDE Recognitions (No. 9903UG and 9947UG)

No. of poles	Coil ratings	Contact ratings	Operations
1	$\begin{aligned} & \text { 6, 12, 24, 50, 110, } 220 \text { VAC } \\ & 6,12,24,48,110 \text { VDC } \end{aligned}$	10 A, 220 VAC $(\cos \varnothing=1)$ 7 A, 220 VAC $(\cos \varnothing=0.4)$ $10 \mathrm{~A}, 28 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$ $7 \mathrm{~A}, 28 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	200×10^{3}
2		$7 \mathrm{~A}, 220 \mathrm{VAC}(\cos \varnothing=1)$ 4 A, 220 VAC $(\cos \varnothing=0.4)$ $7 \mathrm{~A}, 28 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$ $4 \mathrm{~A}, 28 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	

- Approved Standards (cont.)

LR Recognitions (No. 563KOB-204523)

No. of poles	Coil ratings	Contact ratings
2,4	6 to 240 VAC	$7.5 \mathrm{~A}, 230 \mathrm{VAC}(\mathrm{PFO} .4)$
	6 to 110 VDC	$5 \mathrm{~A}, 24 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$

Engineering Data

LY3 and LY4
Maximum Switching Power

LY2Z
Maximum Switching Power

LY2Z
Endurance

Dimensions

Note: All units are in millimeters unless otherwise indicated.

■ Relays with Solder/Plug-in Terminals

LY1
LY1N (-D2)
LY1-D

Terminal Arrangement/Internal Connections (Bottom View)

LY1N-D2

LY2
LY2Z
LY2-D
LY2N
LY2Z-D
LY2N-D2
LY2ZN
LY2ZN-D2

Terminal Arrangement/Internal Connections (Bottom View)

LY2(Z)

LY2(Z)N-D2

Note: The DC models have polarity.

LY3
LY3N
LY3-D

Terminal Arrangement/Internal Connections (Bottom View)

Note: The DC models have polarity.

Terminal Arrangement/Internal Connections (Bottom View)

Note: The DC models have polarity.

LY2-CR
LY2Z-CR
LY2N-CR
LY2ZN-CR

Terminal Arrangement/Internal Connections
(Bottom View)

Relays with PCB Terminals

PC Board Holes (Bottom View)

Note: 1. The above model is the LY2-0.
2. This figure is 6.4 for the LY1-0

Note: 1. The tolerance for the above figures is 0.1 mm .
2. Besides the terminals, some part of the LY1-0 carries current. Due attention should be paid when mounting the LY1-0 to a double-sided PC board.

General Purpose Relay - LY

■ Upper Mounting relays

LY1F
LY2F

Mounting Holes

ϕ
380.1

Note: 1. Eight 3-dia. holes should apply to the LY2F model.

LY3F

Mounting holes

$\operatorname{coc}_{-28}^{0.1} \rightarrow$

■ Mounting Height with Socket

The following Socket heights should be maintained.
Front-connecting
Back-connecting

PTF \square A (-E)

PT \square

Note: 1. The PTF $\square \mathrm{A}(-E)$ can be track-mounted or screw-mounted.
2. For the $\mathrm{LY} \square$-CR (CR circuit built-in type) model, this figure should be 88 .

- Sockets

Mounting Plates for Back-connecting

General Purpose Relay - LY

- Hold-down Clips

Hold-down clips are used to hold Relays to Sockets and prevent them from coming loose due to vibration or shock.

Used with Socket		Used with Socket mounting plate	For CR circuit built-in Relay	
PYC-A1	PYC-P	PYC-S	Y92H-3	PYC-1

Precautions

- Connections

Do not reverse polarity when connecting DC-operated Relays with built-in diodes or indicators.

Slim and Space-saving Power Plug-in Relay

■ Lockable test button models now available.
■ Built-in mechanical operation indicator.

- Provided with nameplate.
- AC type is equipped with a coil-disconnection self-diagnostic function (LED type).
■ High switching power (1-pole: 10 A).
■ Environment-friendly (Cd, Pb free).
- Wide range of Sockets also available.

Model Number Structure

Model Number Legend
G2R $\frac{\square}{1}-\frac{\square}{2} \frac{\square}{3} \frac{\square}{4}-\frac{\square}{5} \frac{\square}{6}-\frac{\square}{7}$

1. Relay Function

Blank: General purpose
2. Number of Poles

1: 1 pole
2: 2 pole
3. Contact Form

Blank: SPDT
4. Contact Type

Blank: Single
5. Terminals
S: Plug-in
6. Classification

Blank: General-purpose
N : LED indicator
D: Diode
ND: LED indicator and diode
NI: LED indicator with test button
NDI: LED indicator and diode with test button
7. Rated Coil Voltage

Ordering Information

List of Models

Classification		Enclosure rating	Coil ratings	Contact form		
		SPDT		DPDT		
Plug-in terminal	General-purpose		Unsealed	AC/DC	G2R-1-S	G2R-2-S
	LED indicator	G2R-1-SN			G2R-2-SN	
	LED indicator with test button	G2R-1-SNI			G2R-2-SNI	
	Diode	DC		G2R-1-SD	G2R-2-SD	
	LED indicator and diode			G2R-1-SND	G2R-2-SND	
	LED indicator and diode with test button			G2R-1-SNDI	G2R-2-SNDI	

Note: When ordering, add the rated coil voltage and "(S)" to the model number. Rated coil voltages are given in the coil ratings table. Example: G2R-1-S 12 VDC (S)__ New model

Rated coil voltage

■ Accessories (Order Separately) Connecting Sockets

Applicable Relay model	Track/surface-mounting Socket		Back-mounting Socket	
	Screwless clamp terminal	Screw terminal	Terminals	Model
$\begin{aligned} & 1 \text { pole } \\ & \text { G2R-1-S(N)(D)(ND)(NI)(NDI) } \end{aligned}$	$\begin{aligned} & \text { - P2RF-05S (See note.) } \\ & \text { (P2CM-S (option)) } \end{aligned}$	- P2RF-05-E - P2RF-05	PCB terminals	P2R-05P, P2R-057P
			Solder terminals	P2R-05A
$\begin{array}{\|l\|} \hline 2 \text { poles } \\ \text { G2R-2-S(N)(D)(ND)(NI)(NDI) } \end{array}$	$\begin{aligned} & \text { - P2RF-08S (See note.) } \\ & \text { (P2CM-S (option)) } \end{aligned}$	- P2RF-08-E - P2RF-08	PCB terminals	P2R-08P, P2R-087P
			Solder terminals	P2R-08A

Note: Use of the P2CM Clip \& Release Lever is recommended to ensure stable mounting.

Accessories for Screwless Clamp Terminal Socket (Option)

Name	Model
Clip \& Release Lever	P2CM-S
Nameplate	R99-11 Nameplate for MY
Socket Bridge	P2RM-SR (for AC), P2RM-SB (for DC)

Mounting Tracks

Applicable Socket	Description	Model
Track-connecting Socket	Mounting track	$\begin{aligned} & 50 \mathrm{~cm}(\ell) \times 7.3 \mathrm{~mm}(\mathrm{t}): \text { PFP-50N } \\ & 1 \mathrm{~m}(\ell) \times 7.3 \mathrm{~mm}(\mathrm{t}): \text { PFP-100N } \\ & 1 \mathrm{~m}(\ell) \times 16 \mathrm{~mm}(\mathrm{t}): \text { PFP-100N2 } \end{aligned}$
	End plate	PFP-M
	Spacer	PFP-S
Back-connecting Socket	Mounting plate	P2R-P*

*Used to mount several P2R-05A and P2R-08A Connecting Sockets side by side.

Specifications

■ Coil Ratings

Rated voltage		Rated current**		$\begin{gathered} \text { Coil } \\ \text { resistance* } \end{gathered}$	Coil inductance (H) (ref. value)		Must operate	Must release	Max. voltage	Power consumption
		50 Hz	60 Hz		$\begin{gathered} \text { Armature } \\ \text { OFF } \end{gathered}$	$\begin{aligned} & \text { Armature } \\ & \text { ON } \end{aligned}$	\% of rated voltage			
AC	24 V	43.5 mA	37.4 mA	253Ω	0.81	1.55	80\% max.	30\% max.	110\%	0.9 VA at 60 Hz
	110 V	9.5 mA	8.2 mA	5,566 Ω	13.33	26.83				
	120 V	8.6 mA	7.5 mA	$7,286 \Omega$	16.13	32.46				
	230 V	4.4 mA	3.8 mA	27,172 Ω	72.68	143.90				
	240 V	3.7 mA	3.2 mA	30,360 Ω	90.58	182.34				

Rated voltage		Rated current ${ }^{*}$	$\begin{gathered} \text { Coil } \\ \text { resistance* } \end{gathered}$	$\underset{\text { (ref. value) }}{\text { Coil inductance }(H)}$		Must operate	Must release	Max. voltage	$\begin{gathered} \text { Power } \\ \text { consumption } \end{gathered}$	
		Armature OFF		$\begin{aligned} & \text { Armature } \\ & \text { ON } \end{aligned}$	\% of rated voltage					
DC	6 V		87.0 mA	69Ω	0.25	0.48	70\% max.	15\% min.	110\%	0.53 W
	12 V	43.2 mA	278Ω	0.98	2.35					
	24 V	21.6 mA	1,113 Ω	3.60	8.25					
	48 V	11.4 mA	$4,220 \Omega$	15.2	29.82					

[^1]
Contact Ratings

Number of poles	1 pole		2 poles	
Load	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load $(\cos \varphi=1)$	Inductive load $(\cos \phi=0.4 ; L / R=7 \mathrm{~ms})$
Rated load	10 A at 250 VAC ; 10 A at 30 VDC	$\begin{aligned} & 7.5 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \text { at } 250 \mathrm{VAC} ; \\ & 5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$2 \mathrm{~A} \text { at } 250 \mathrm{VAC} ; 3 \mathrm{~A} \text { at }$ 30 VDC
Rated carry current	10 A		5 A	
Max. switching voltage	440 VAC, 125 VDC		380 VAC, 125 VDC	
Max. switching current	10 A		5 A	
Max. switching power	$\begin{aligned} & 2,500 \mathrm{VA}, \\ & 300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,875 \mathrm{VA}, \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,250 \mathrm{VA}, \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 500 \mathrm{VA}, \\ & 90 \mathrm{~W} \end{aligned}$
Failure rate (reference value)	100 mA at 5 VDC		10 mA at 5 VDC	

Note: 1. P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation
Characteristics

Item	1 pole	2 poles
Contact resistance	$100 \mathrm{~m} \Omega$ max.	
Operate (set) time	15 ms max.	
Release (reset) time	AC: 10 ms max.; DC: 5 ms max. (w/built-in diode: 20 ms max.)	AC: 15 ms max.; DC: 10 ms max. (w/built-in diode: 20 ms max.)
Max. operating frequency	Mechanical: 18,000 operations $/ \mathrm{hr}$ Electrical: 1,800 operations $/ \mathrm{hr}$ (under rated load)	
Insulation resistance	$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength	$5,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts*; $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity	$5,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts*; $3,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude $(1.5 \mathrm{~mm}$ double amplitude)	
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$ when energized; $100 \mathrm{~m} / \mathrm{s}^{2}$ when not energized	
Endurance	Mechanical: AC coil: $10,000,000$ operations $\mathrm{min} . ;$ Electrical: DC coil: $20,000,000$ operations min. (at 18,000 operations $/ \mathrm{hr}$) 100,000 operations min. (at 1,800 operations $/ \mathrm{hr}$ under rated load) (DC coil type)	
Ambient temperature	Operating: $\quad-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity	Operating: 5\% to 85\%	
Weight	Approx. 21 g	

Note: Values given above are initial values
*4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute when the P2R-05A or P2R-08A Socket is mounted.

- Approved Standards

UL 508 (File No. E41643)

Model	Contact form	Coil ratings	Contact ratings	Operations
G2R-1-S	SPDT	$\begin{aligned} & 5 \text { to } 110 \mathrm{VDC} \\ & 5 \text { to } 240 \text { VAC } \end{aligned}$	$10 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive) $10 \mathrm{~A}, 250$ VAC (general use) TV-3 (NO contact only)	6×10^{3}
G2R-2-S	DPDT		$5 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive) $5 \mathrm{~A}, 250 \mathrm{VAC}$ (general use) TV-3 (NO contact only)	6×10^{3}

CSA 22.2 No.0, No. 14 (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings	Operations
G2R-1-S	SPDT	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 5 \text { to } 240 \text { VAC } \end{aligned}$	$10 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive) $10 \mathrm{~A}, 250$ VAC (general use) TV-3 (NO contact only)	6×10^{3}
G2R-2-S	DPDT		$5 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive) $5 \mathrm{~A}, 250 \mathrm{VAC}$ (general use) TV-3 (NO contact only)	6×10^{3}

IEC.VDE (EN61810)

Contact form	Coil ratings	Contact ratings	Operations
1 pole	$6,12,24,48 \mathrm{VDC}$ $24,110,120,230$, 240 VAC	$5 \mathrm{~A}, 440 \mathrm{VAC}(\cos \phi=1.0)$ $10 \mathrm{~A}, 250 \mathrm{VAC}(\cos \phi=1.0)$ $10 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms})$	100×10^{3}
2 poles	$6,12,24,48 \mathrm{VDC}$ $24,110,120,230$, 240 VAC	$5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \phi=1.0)$ $5 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms})$	100×10^{3}

LR

Number of poles	Coil ratings	Contact ratings	Operations
1 pole	5 to 110 VDC 5 to 240 VDC	$10 \mathrm{~A}, 250 \mathrm{VAC}$ (general use) $7.5 \mathrm{~A}, 250 \mathrm{VAC}$ (PF0.4) $10 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive) $5 \mathrm{~A}, 30 \mathrm{VDC}$ (L/R=7ms)	100×10^{3}
2 poles	5 to 110 VDC 5 to 240 VDC	$5 \mathrm{~A}, 250 \mathrm{VAC}$ (general use) $2 \mathrm{~A}, 250 \mathrm{VAC}$ (PF0.4) $5 \mathrm{~A}, 30 \mathrm{VDC} \mathrm{(resistive)}$ $3 \mathrm{~A}, 30 \mathrm{VDC} \mathrm{(L/R=7ms)}$	100×10^{3}

Engineering Data

Maximum Switching Power

Plug-in Relays

Endurance

Plug-in Relays

G2R-1-S

G2R-2-S

Ambient Tempreture vs Maximum Coil Voltage

Ambient temperature (C)

Note: The maximum voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

SPDT Relays

G2R-1-S, G2R-1-SN, G2R-1-SNI
G2R-1-SD, G2R-1-SND, G2R-1-SNDI

DPDT Relays

G2R-2-S, G2R-2-SN, G2R-2-SNI
G2R-2-SD, G2R-2-SND, G2R-2-SNDI

Terminal Arrangement/Internal Connections (Bottom View)
G2R-1-S
G2R-1-SD (DC)

G2R-1-SN, G2R-1-SNI (AC) G2R-1-SN, G2R-1-SNI (DC)

G2R-1-SND, G2R-1-SNDI (DC)

Terminal Arrangement/Internal Connections

 (Bottom View)G2R-2-S

G2R-2-SN, G2R-2-SNI (AC)

G2R-2-SD (DC)

G2R-2-SN, G2R-2-SNI (DC)

G2R-2-SND, G2R-2-SNDI (DC)

Track/Surface Mounting Sockets

P2RF-05-S

Standard model
 label attached)

Terminal Arrangement (Top View)

Clip and Reverse Lever

Terminal Arrangement (Top View)

Option (with ejector and label attached)

Accessories for P2RF- \square-S

P2RF-05-E

Terminal Arrangement
(Top View)
Mounting Holes
(for Surface Mounting)

Note: Pin numbers in parentheses apply to DIN standard.

Mounting Height of Relay with Track/Surface Mounting Sockets

P2RF- \square

P2RF- \square-E

P2RF- \square-S

Back-connecting sockets

P2R-05P (1-pole)

Terminal Arrangement (Bottom View)

Mounting Holes Tolerance: 0.1

P2R-08P (2-pole)

Terminal Arrangement
(Bottom View)

Recommended thickness of the panel is 1.6 to 2.0 mm

Mounting Height of Relay with Back-connecting Sockets

Mounting Tracks

It is recommended to use a panel 1.6 to 2.0 mm thick.

End Plate

PRECAUTIONS FOR P2RF- \square-S CONNECTION

- Do not move the screwdriver up, down, or from side to side while it is inserted in the hole. Doing so may cause damage to internal components (e.g., deformation of the clamp spring or cracks in the housing) or cause deterioration of insulation.
- Do not insert the screwdriver at an angle. Doing so may break the side of the socket and result in a short-circuit.

CAUTION

Do not use the test button for any purpose other than testing. Be sure not to touch the test button accidentally as this will turn the contacts ON. Before using the test button, confirm that circuits, the load, and any other connected item will operate safely.

CAUTION

Check that the test button is released before turning ON relay circuits.

CAUTION

If the test button is pulled out too forcefully, it may bypass the momentary testing position and go straight into the locked position.

CAUTION

Use an insulated tool when you operate the test button.

A High-capacity, High-dielectricstrength Relay Compatible with Momentary Voltage Drops

■ No contact chattering for momentary voltage drops up to 50% of rated voltage.

- Wide-range AC-activated coil that handles 100 to 120 or 200 to 240 VAC at either 50 or 60 Hz .
- Miniature hinge for maximum switching power,
 particularly for inductive loads.
■ Flame-resistance materials (UL94V-0qualifying) used for all insulation material.
■ Quick-connect, screw, and PCB terminals, and DIN track mounting available.

Ordering Information

Mounting Type	Contact form	Quick-connect terminals \square	Screw terminals terminals IIIIT: \square	PCB terminals
E-bracket	SPST-NO	G7L-1A-T	G7L-1A-B	-
	DPST-NO	G7L-2A-T	G7L-2A-B	-
E-bracket (with test button)	SPST-NO	G7L-1A-TJ	G7L-1A-BJ	-
	DPST-NO	G7L-2A-TJ	G7L-2A-BJ	-
Upper bracket	SPST-NO	G7L-1A-TUB	G7L-1A-BUB	-
	DPST-NO	G7L-2A-TUB	G7L-2A-BUB	-
Upper bracket (with test button)	SPST-NO	G7L-1A-TUBJ	G7L-1A-BUBJ	-
	DPST-NO	G7L-2A-TUBJ	G7L-2A-BUBJ	-
PCB mounting	SPST-NO	-	-	G7L-1A-P
	DPST-NO	-	-	G7L-2A-P

Note: 1. When ordering, add the rated coil voltage to the model number.
Example: G7L-1A-T 12 VAC (\sim)
L_ Rated coil voltage

- Accessories (Order Separately)

Terminals	Contact form	Model	P99-07 E-brackets	P7LF-D DIN Track Mounting Adapter	P7LF-06 Front Connecting Socket $\rightarrow-3$
Quick-connect terminals	SPST-NO	G7L-1A-T	Yes	Yes	Yes
		G7L-1A-TJ	Yes	Yes	Yes
	DPST-NO	G7L-2A-T	Yes	Yes	Yes
		G7L-2A-TJ	Yes	Yes	Yes
Screw terminals	SPST-NO	G7L-1A-B	Yes	Yes	No
		G7L-1A-BJ	Yes	Yes	No
	DPST-NO	G7L-2A-B	Yes	Yes	No
		G7L-2A-BJ	Yes	Yes	No

Applicable Relay	Name	Model
G7L-1A-T/G7L-1A-TJ/G7L-1A-B/G7L-1A-BJ G7L-2A-T/G7L-2A-TJ/G7L-2A-B/G7L-2A-BJ	E-bracket	R99-07
	Adapter	P7LF-D
G7L-1A-T/G7L-1A-TJ/G7L-2A-T/G7L-2A-TJ	Front-connecting Socket	P7LF-06
G7L-1A-B/G7L-1A-BJ/G7L-1A-BUB/G7L-1A-BUBJ G7L-2A-B/G7L-2A-BJ/G7L-2A-BUB/G7L-2A-BUBJ	Cover	P7LF-C

Model Number Legend

1. Contact Form

1A: SPST-NO
2A: DPST-NO
2. Terminal Shape

T: Quick-connect terminals
P: PCB terminals
B: Screw terminals
3. Mounting Construction

Blank: E-bracket UB: Upper bracket 4. Special Functions Blank: Standard mode $\mathrm{J}: \quad$ With test button

5. Rated Coil Voltage

AC: 12, 24, 50, 100 to 120,200 to 240
DC: $6,12,24,48,100$

Application Examples

- Compressors for air conditioners and heater switching controllers.
- Switching controllers for power tools or motors.
- Power controllers for water heaters.
- Power controllers for dryers.
- Lamp controls, motor drivers, and power supply switching in copy machines, facsimile machines, and other office equipment.
- Lighting controllers.
- Power controllers for packers or food processing equipment.
- Magnetron control in microwaves.

Specifications

Coil Ratings

Rated Voltage		Rated current 142 mA	Coil resistance -	Must operate voltage 75% max. of rated voltage	Must release voltage 15% min. of rated voltage	Max. voltage $\begin{array}{l}110 \% \text { of } \\ \text { rated voltage }\end{array}$	Power consumption (approx.) 1.7 to 2.5 VA $(60 \mathrm{~Hz})$
AC ()	12 V						
	24 V	71 mA	-				
	50 V	34 mA	-				
	100 to 120 V	$\begin{aligned} & 7.0 \text { to } \\ & 20.4 \mathrm{~mA} \end{aligned}$	-	75 V	18 V	132 V	
	200 to 240 V	$\begin{array}{\|l\|} \hline 8.5 \mathrm{to} \\ 10.2 \mathrm{~mA} \end{array}$	-	150 V	36 V	264 V	
DC (=)	6 V	317 mA	18.9Ω	75\% max. of rated voltage	15% min. of rated voltage	110% of rated voltage	1.9 W
	12 V	158 mA	75Ω				
	24 V	79 mA	303Ω				
	48 V	40 mA	1220Ω				
	100 V	19 mA	5260Ω				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for $A C$ rated current and $\pm 15 \%$ for DC coil resistance.
2. Performance characteristic data are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. \sim indicates AC and = indicates DC (IEC417 publications).

- Contact Ratings

Model	G7L-1A-T@/G7L-1A-B@		G7L-2A-T@/G7L-2A-B@		G7L-1A-P/G7L-2A-P	
	Resistive load $(\cos \varnothing=1)$	Inductive load $(\cos \varnothing=0.4$,	Resistive load $(\cos \varnothing=1)$	Inductive load $(\cos \varnothing=0.4,$	Resistive load $(\cos \varnothing=1)$	Inductive load $(\cos \varnothing=0.4)$
Rated Load	$\begin{aligned} & 30 \mathrm{~A}, 220 \mathrm{VAC} \\ & (\sim) \end{aligned}$	$\begin{aligned} & 25 \mathrm{~A}, 220 \text { VAC } \\ & (\sim) \end{aligned}$	$\begin{aligned} & 25 \mathrm{~A}, 220 \text { VAC } \\ & (\sim) \end{aligned}$		$\begin{aligned} & 25 \mathrm{~A}, 220 \mathrm{VAC} \\ & (\sim) \\ & \hline \end{aligned}$	
Carry Current	30 A		25 A		20 A	
Max. switching voltage	250 VAC (\sim		250 VAC (\sim		250 VAC (\sim	
Max. switching current	30 A		25 A		20 A	
Max. switching power	6,600 VAC ()	5,500 VAC ()	5,500 VAC ()		4,400 VAC ()	
Failure rate* (reference value)	$100 \mathrm{~mA}, 5 \mathrm{VDC} \mathrm{(} \mathrm{)}$		$100 \mathrm{~mA}, 5 \mathrm{VDC}(\sim)$		$100 \mathrm{~mA}, 5 \mathrm{VDC}(\sim)$	

${ }^{*}$ Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

Characteristics

Contact resistance	$50 \mathrm{~m} \Omega$ max.
Operate time	30 ms max.
Release time	30 ms max.
Max. operating frequency	Mechanical: 1,800 operations/hr Electrical: 1,800 operations/hr (under rated load)
Insulation resistance	1,000 M Ω min. (at 500 VDC)
Dielectric strength	4,000 VAC min., $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity $2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity (DPST-NO model)
Impulse withstand voltage	$10,000 \mathrm{~V}$ between coil and contact (with $1.2 \times 50 \mu$ s impulse wave)
Vibration resistance	Destruction: 10 to 55 to, 0.75 mm single amplitude (1.5 mm double amplitude) Malfunction: 10 to 55 to, 0.75 mm single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 1,000,000 operations min. (at 1,800 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr under rated load)
Ambient temperature	Operating: $-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85\%
Weight	Quick-connect terminal models: approx. 90 g PCB terminal models: approx. 100 g Screw terminal models: approx. 120 g

Note: The values given above are initial values

- Approved by Standards

UL 508, 1950 Recognitions (File No. E41643)

CSA 22.2 No. 14 Listings (File No.LR35535)

Model	Contact Form	Coil ratings	Contact ratings	Operations
$\begin{aligned} & \text { G7L-1A-T@ } \\ & \text { G7L-1A-B@ } \end{aligned}$	SPST-NO	12 to 240 VAC 5 to 220 VDC	$30 \mathrm{~A}, 277$ VAC (RES) 25 A, 277 VAC (GEN) $30 \mathrm{~A}, 120$ VAC (GEN)	100×10^{3}
			$\begin{aligned} & 1.5 \mathrm{~kW}, 120 \mathrm{VAC}(\mathrm{~T}) \\ & 1.5 \mathrm{HP}, 120 \mathrm{VAC} \end{aligned}$	6×10^{3}
			$3 \mathrm{HP}, 277$ VAC	$\begin{aligned} & 100 \times 10^{3} \\ & \left(\text { CSA; } 6 \times 10^{3}\right) \end{aligned}$
			20 FLA/120 LRA, 120 VAC 17 FLA/102 LRA, 265 VAC	30×10^{3}
$\begin{aligned} & \text { G7L-2A-T@ } \\ & \text { G7L-2A-B@ } \end{aligned}$	DPST-NO		TV-10, 120 VAC	25×10^{3}
			$\begin{aligned} & 25 \mathrm{~A}, 277 \text { VAC (RES) } \\ & 25 \mathrm{~A}, 277 \mathrm{VAC}(\mathrm{GEN}) \\ & 25 \mathrm{~A}, 120 \mathrm{VAC}(\mathrm{GEN}) \end{aligned}$	100×10^{3}
			$\begin{aligned} & 1.3 \mathrm{~kW}, 120 \mathrm{VAC}(\mathrm{~T}) \\ & 1 \mathrm{HP}, 120 \mathrm{VAC} \end{aligned}$	6×10^{3}
			2 HP, 277 VAC	$\begin{aligned} & 100 \times 10^{3} \\ & \left(\text { CSA; } 6 \times 10^{3}\right) \end{aligned}$
			20 FLA/120 LRA, 120 VAC 17 FLA/102 LRA, 265 VAC	30×10^{3}
G7L-1A-P	SPST-NO		TV-8, 120 VAC	25×10^{3}
			$20 \mathrm{~A}, 277$ VAC (RES) 20 A, 277 VAC (GEN) $20 \mathrm{~A}, 120$ VAC (GEN)	100×10^{3}
			$\begin{aligned} & 1.5 \mathrm{~kW}, 120 \mathrm{VAC}(\mathrm{~T}) \\ & 1.5 \mathrm{HP}, 120 \mathrm{VAC} \end{aligned}$	6×10^{3}
			$3 \mathrm{HP}, 277$ VAC	$\begin{aligned} & 100 \times 10^{3} \\ & \left(\mathrm{CSA} ; 6 \times 10^{3}\right) \end{aligned}$
			20 FLA/120 LRA, 120 VAC 17 FLA/102 LRA, 265 VAC	30×10^{3}
G7L-2A-P	DPST-NO		TV-10, 120 VAC	25×10^{3}
			$\begin{aligned} & 20 \mathrm{~A}, 277 \mathrm{VAC}(\mathrm{RES}) \\ & 20 \mathrm{~A}, 277 \mathrm{VAC}(\mathrm{GEN}) \\ & 20 \mathrm{~A}, 120 \mathrm{VAC}(\mathrm{GEN}) \end{aligned}$	100×10^{3}
			$1.3 \mathrm{~kW}, 120$ VAC (T) $1 \mathrm{HP}, 120$ VAC	6×10^{3}
			$\begin{aligned} & 2 \text { HP, } 277 \text { VAC } \\ & 20 \text { FLA/120 LRA, } 120 \text { VAC } \end{aligned}$	100×10^{3} 30×10^{3}
			17 FLA/102 LRA, 265 VAC	30×10^{3}
			TV-8, 120 VAC	25×10^{3}

General Purpose Relay - G7L
TÜV: File No. R9051158 (VDE 0435, IEC 255, IEC 950, EN60950)

Model	Contact Form	Coil ratings	Contact ratings	Operations
G7L-1A-B@	SPST-NO	$\begin{aligned} & \text { 6, 12, 24, 48, 100, 110, } \\ & 200,220 \text { VDC } \\ & 12,24,50,100 \text { to } 120, \\ & 200 \text { to } 240 \text { VAC } \end{aligned}$	$\begin{aligned} & 30 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=1.0) \\ & 25 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=0.4) \\ & 30 \mathrm{~A}, 120 \mathrm{VAC}(\cos \varnothing=0.4) \end{aligned}$	100×10^{3}
G7L-2A-B@	DPST-NO		$\begin{aligned} & 25 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=1.0) \\ & 25 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=0.4) \end{aligned}$	
G7L-1A-T@	SPST-NO		$\begin{aligned} & 25 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=1.0) \\ & 25 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=0.4) \end{aligned}$	
G7L-2A-T@	DPST-NO		$\begin{aligned} & 25 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=1.0) \\ & 25 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=0.4) \end{aligned}$	
G7L-1A-P	SPST-NO		$\begin{aligned} & 20 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=1.0) \\ & 20 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=0.4) \end{aligned}$	
G7L-2A-P	DPST-NO		$\begin{aligned} & 20 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=1.0) \\ & 20 \mathrm{~A}, 240 \mathrm{VAC}(\cos \varnothing=0.4) \end{aligned}$	

Engineering Data

G7L-1A-T/G7L-1A-B

Maximum Switching Power

Endurance

Endurance

Engineering Data

G7L-1A-P/G7L-2A-P
Maximum Switching Power

Endurance

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. E-brackets are sold separately.

■ Quick-connect Terminals with E-bracket

■ Quick-connect Terminals with E-bracket (contd)

G7L-2A-TJ
with Test Button

Quick-connect Terminals with DIN Track Mounting Adapter

Note: 1. The DIN Track Mounting Adapter and DIN tracks are sold separately.
2. The DIN Track Mounting Adapter can be track-mounted or screw-mounted.

G7L-1A-T

Terminal Arrangement/ Internal Connections (Top View)

Mounting Holes

G7L-2A-T

Terminal Arrangement/
Mounting Holes Internal Connections (Top View)

G7L-1A-TJ
with Test Button

G7L-2A-TJ with Test Button

General Purpose Relay - G7L

Quick-connect Terminals with Front-connecting Socket

Note: 1. The Front-connecting Socket and DIN tracks are sold separately.
2. The Front-connecting Socket can be track-mounted or screw-mounted.

Quick-connect Terminals with Upper Bracket

Screw Terminals with E-bracket

Note: E-brackets are sold separately.
G7L-1A-B

- Screw Terminals with E-bracket (contd)

E-brackets are sold separately.
G7L-2A-B

G7L-1A-BJ with Test Button

G7L-2A-BJ
with Test Button

■ Screw Terminals with DIN Track Mounting Adapter

Note: 1. The DIN Track Mounting Adapter and DIN tracks are sold separately.
2. The DIN Track Mounting Adapter can be track-mounted or screw-mounted.

G7L-1A-B

G7L-2A-B

Screw Terminals with DIN Track Mounting Adapter (contd)

Note: 1. The DIN Track Mounting Adapter and DIN tracks are sold separately.
2. The DIN Track Mounting Adapter can be track-mounted or screw-mounted.

G7L-2A-BJ with Test Button

- Screw Terminals with Upper Bracket

G7L-1A-BUB

G7L-2A-BUB

G7L-1A-BUBJ with Test Button

/ Mounting Holes

Mounting Holes

- Screw Terminals with Upper Bracket (contd)

G7L-2A-BUBJ with Test Button

PCB Terminals with PCB Mounting

G7L-1A-P

Terminal Arrangement/ Internal Connections (Top View)

G7L-2A-P

Terminal Arrangement/ Internal Connections (Top View)

R99-07G5D E-bracket

P7LF-D Adapter

Mounting Holes

Mounting Holes
(Bottom View)

Mounting Holes (Bottom View)

Mounting Holes (Bottom View)

■ PCB Terminals with PCB Mounting (contd)

P7LF-06

Front-connecting
Socket

P7F-C Cover

Mounting Holes (Bottom View)

Put the P7LF-C cover onto the terminals in order to protect the user from electric shock.

■ Internal Coil Circuit

DC Operating Coil

i

AC Operating Coil

Precautions

HANDLING

- To preserve performance, do not drop or otherwise subject the Power Relay to shock.
- The case is not designed to be removed during normal handling and operation. Doing so may affect performance.
- Use the Power Relay in a dry environment free from excessive dust, $\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}$, or organic gas.
- Do not allow a voltage greater than the maximum allowable coil voltage to be applied continuously.
- Do not use the Power Relay outside of specified voltages and currents.
- Do not allow the ambient operating temperature to exceed the specified limit.

INSTALLATION

- Although there are not specific limits on the installation site, it should be as dry and dust-free as possible.
- PCB Terminal-equipped Relays weigh approximately 100 g . Be sure that the PCB is strong enough to support them. We recommend dual-side through-hole PCBs to reduce solder cracking from heat stress.
- Quick-connect terminals can be connected to Faston receptacle \#250 and positive-lock connectors.
- Allow suitable slack on leads when wiring, and do not subject the terminals to excessive force.
- G7L Relays with test buttons must be mounted facing down.
- Be careful not to touch the test button accidentally. Doing so may turn ON the contact.
- Use the test button only to check the electrical conductivity. Do not switch the load directly by pushing the test button.

CLEANING PCB TERMINALS

- PCB terminals have flux-tight construction which prevents flux from penetrating into the Relay base housing, e.g., due to capillary action up the terminals when Relay is soldered onto the PCB. This type of Relay cannot be immersed for cleaning.

CONNECTING

- Refer to the following table when connecting a wire with a crimp-style terminal to the G7L.

Terminals	Screw terminals	Front-connecting Socket
Coil		
Contact		

RATED CURRENT FLOW

- When using B-series (screw) products, the rated current from the screw terminals (M4) should be 20 A or less according to jet standard (electrical appliance and material control law of Japan).

OPERATING COIL

- As a rule, either a DC battery or a DC power supply with a maximum of 5% ripple must be used for the operating voltage for DC Relays. Before using a rectified AC supply, confirm that the ripple is not greater than 5%. Ripple greater than this can lead to variations in the operating and reset voltages.

As excessive ripple can generate pulses, the insertion of a smoothing capacitor is recommended as shown below.

E max.: Max. ripple
E min.: Min. ripple
E mean: Mean DC value

- When driving a transistor, check the leakage current and connect a bleeder resistor if necessary.

DIN TRACK MOUNTING ADAPTER AND FRONT-CONNECTING SOCKET

DIN Track Mounting

- Use a DIN-conforming 50-cm track or 1-m track (both are sold separately) for mounting a number of G7L Relays.
- Cut and shorten the track to an appropriate length if the required track length is less than 50 cm .
- The DIN Track Mounting Adapter and Front-connecting Socket can be mounted on the G7L with just one hand and dismounted with ease by using a screwdriver.
- To support the G7L mounted on a DIN Track Mounting Adapter or Front-connecting Socket, use the PFP-M End Plate. Put the End Plate onto the DIN Track Mounting Adapter or Frontconnecting Socket so that the surface mark of the End Plate faces upwards. Then tighten the screw of the End Plate securely with a screwdriver.

Screw Mounting

- Screw-mount the DIN Track Mounting Adapter or Frontconnecting Socket securely after opening screw mounting holes on them.
- When cutting or opening holes on the panel after the Frontconnecting Socket is mounted, take proper measures so that the cutting chips will not fall onto the Relay terminals. When cutting or opening holes on the upper part of the panel, mask the Front-connecting Socket properly with a cover.

A High-capacity, High-dielectric-

 strength, Multi-pole Relay Used Like a Contactor- Miniature hinge for maximum switching power for motor loads as well as resistive and inductive loads.
■ No contact chattering for momentary voltage drops up to 50% of rated voltage.

■ Withstanding more than 4 kV between contacts that are different in polarity and between the coil and contacts.
■ Flame-resistant materials (UL94V-0-qualifying) used for all insulation material..

- Standard models approved by UL and CSA.

Ordering Information

Mounting type	Contact form	PCB terminals	Screw terminals	Quick-connect terminals
PCB mounting	4PST-NO	G7J-4A-P, G7J-4A-PZ	-	-
	3PST-NO/SPST-NC	G7J-3A1B-P, G7J-3A1B-PZ	-	-
	DPST-NO/DPST-NC	G7J-2A2B-P	-	-
W-bracket (See Note)	4PST-NO	-	G7J-4A-B, G7J-4A-BZ	G7J-4A-T, G7J-4A-TZ
	3PST-NO/SPST-NC	-	G7J-3A1B-B, G7J-3A1B-BZ	G7J-3A1B-T, G7J-3A1B-TZ
	DPST-NO/DPST-NC	-	G7J-2A2B-B	G7J-2A2B-T

Note: These Relays need a W-bracket (sold separately) for mounting.
When ordering specify the voltage.
Example: G7J-4A-P 240 VAC
Rated coil voltage

Model Number Legend

G7J $-\frac{\square}{1}-\frac{\square}{2}-\frac{\square}{3}$

1. Contact Form

4A: 4PST-NO
3A1B: 3PST-NO/SPST-NC
2A2B: DPST-NO/DPST-NC

2. Terminal Shape

P: PCB terminals
B: Screw terminals
T: Quick-connect terminals (\#250 terminal)
3. Contact Structure

Z: Bifurcated contact
None: Single contact

Note: For bifurcated contact type, output is 1 NO (4PST-NO) or 1NC (3PST-NO/SPST-NC).

> PCB Terminals (Bifurcated Contact)

Contact Form	Rated voltage (V)	Model
4PST-NO	200 to 240 VAC 24 VDC	G7J-4A-PZ
3PST-NO/ SPST-NC	12,24 VDC	G7J-3A1B-PZ

W-bracket Screw Terminals

Contact form	Rated voltage(V)	Model
4 PST-NO	$24,50,100$ to 120, 200 to 240 VAC	G7J-4A-B
	12,24 VDC	
	$24,50,100$ to 120, 200 to 240 VAC	G7J-3A1B-B
	12,24 VDC	
DPST-NO/DPST- NC	$24,50,100$ to 120, 200 to 240 VA.C	G7J-2A2B-B
	12,24, VDC	

Screw Terminals (Bifurcated Contact)

Name	Rated voltage (V)	Model
4PST-NO	Under registration	G7J-4A-B
3PST-NO/ SPST-NC	$24,50,100$ to 120, 200 to 240 VAC	G7J-3A1B-BZ
	$6,12,24,48,100,110$ VDC	

Accessories (Order Separately)

Name	Model	Applicable Relay
W-bracket	R99-04 for G5F	G7J-4A-B
		G7J-3A1B-B
		G7J-2A2B-B
		G7J-4A-T
		G7J-3A1B-T
		G7J-2A2B-T

Application Examples

- Compressors for air conditioners and heater switching controllers.
- Switching controllers for power tools or motors.
- Lamp controls, motor drivers, and power supply switching controllers in copy machines, facsimile machines, and other office equipment.

Specifications

■ Coil Ratings

Rated voltage		Rated current voltage	Coil Resistance	Must operate voltage	Must release voltage	Max. voltage	Power consumption
AC	24 VAC	75 mA	-	75\% max. of rated voltage	15% min. of rated voltage	110% of rated voltage	Approx. 1.8 to 2.6 VA
	50 VAC	36 mA	-				
	100 to 120 VAC	18 to 21.6 mA	-				
	200 to 240 VAC	9 to 10.8 mA	-				
DC	6 VDC	333 mA	18Ω		10% min. of rated voltage		Approx.$2.0 \mathrm{~W}$
	12 VDC	167 mA	72Ω				
	24 VDC	83 mA	288Ω				
	48 VDC	42 mA	1,150 Ω				
	100 VDC	20 mA	5,000 Ω				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for $A C$ rated current and $\pm 15 \%$ for DC coil resistance. (The values given for AC rated current apply at 50 Hz or 60 Hz .)
2. Performance characteristic data are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is one that is applicable to the Relay coil at $23^{\circ} \mathrm{C}$.

- Power controllers for packers or food processing equipment.
- Power controllers for inverters.

Contact Ratings

Item	Resistive load ($\cos \varnothing=1$)	Inductive load ($\cos \varnothing=0.4$)	Resistive load
Contact mechanism	Double break		
Contact material	Ag alloy		
Rated load	NO: 25 A at 220 VAC (24 A at 230 VAC) NC: 8 A at 220 VAC (7.5 A at 230 VAC)		NO: 25 A at 30 VDC $\mathrm{NC}: 8 \mathrm{~A}$ at 30 VDC
Rated carry current	NO: 25 A (1 A) NC: 8 A (1 A)		
Max. switching voltage	250 VAC		125 VDC
Max. switching current	$\begin{aligned} & \text { NO: } 25 \text { A (1 A) } \\ & \text { NC: } 8 \text { A (1 A) } \end{aligned}$		

Note: The values in parentheses indicate values for a bifurcated contact.
Characteristics

Contact resistance (see note 2)	$50 \mathrm{~m} \Omega$ max.
Operate time (see note 3)	50 ms max.
Release time (see note 3)	50 ms max.
Max. operating frequency	Mechanical: 1,800 operations/hr Electrical: 1,800 operations/hr
Insulation resistance (see note 4)	1,000 M Ω min. (at 500 VDC)
Dielectric strength	$4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts 4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$10,000 \mathrm{~V}$ between coil and contact (with $1.2 \times 50 \mu \mathrm{~s}$ impulse wave)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude) Malfunction: NO: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude); NC: 10 to 26 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: NO: $100 \mathrm{~m} / \mathrm{s}^{2}$ NC: $20 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 1,000,000 operations min. (at 1,800 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr) (see note 5)
Error rate (see note 6)	100 mA at 24 VDC (bifurcated contact: 24 VDC 10 mA)
Ambient temperature	Operating: $-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: 5\% to 85\%
Weight	PCB terminal: approx. 140 g Screw terminal: approx. 165 g Quick-connect terminal: approx. 140 g

Note: 1. The above values are all initial values.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
3. The operate and the release times were measured with the rated voltage imposed with any contact bounce ignored at an ambient temperature of $23^{\circ} \mathrm{C}$.
4. The insulation resistance was measured with a $500-\mathrm{VDC}$ megger applied to the same places as those used for checking the dielectric strength.
5. The electrical endurance was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
6. This value was measured at a switching frequency of 60 operations per minute.

- Approved by Standards

The G7J satisfies the following international standards. Approval for some international markings and symbols are still pending, however, and information on them will be added when they are approved.

UL (File No. E41643)

CSA (File No. LR35535)

Coil ratings	Contact ratings		Number of test operations
$\begin{array}{\|l} 24 \text { to } 265 \text { VAC } \\ 6 \text { to } 110 \text { VDC } \end{array}$	NO contact	25 A 277 VAC, Resistive	30,000
		25 A 120 VAC, General Use	
		25 A 277 VAC, General Use	
		1.5 kW 120 VAC , Tungsten	6,000
		1.5 hp 120 VAC	
		$3 \mathrm{hp} \mathrm{240/265/277} \mathrm{VAC}$	
		3-phase 3 hp 240/265/277 VAC	
		3-phase 5 hp 240/265/277 VAC	30,000
		20FLA/120LRA 120 VAC	
		17FLA/102LRA 277 VAC	
		TV-10 120 VAC	25,000
		25 A 30 VDC, Resistive	30,000
		1 A 277 VAC, General Use	6,000
	NC contact	8 A 277 VAC, Resistive	30,000
		8 A 120 VAC, General Use	
		8 A 277 VAC, General Use	
		8 A 30 VDC, Resistive	
		1 A 277 VAC, General Use	6,000

Reference

UL approval: UL508 for industrial control devices
UL1950 for information processing equipment including business machines
CSA approval: CSA C22.2 No. 14 for industrial control devices
CSA C22.2 No. 950 for information processing equipment including business machines
VDE (File No. 5381UG)

Model	Coil ratings	Contact ratings	
		NO contact	NC contact
G7J-4A-B(P) (T) (Z) G7J-2A2B(P) (T) G7J-3A1B-B(P) (T) (Z)	6, 12, 24, 48, 100 VDC $24,50,100$ to 120,200 to 240 VAC	$\begin{aligned} & 25 \text { A } 240 \text { VAC } \cos \varnothing=0.4 \\ & 25 \text { A } 240 \text { VAC } \cos \varnothing=1 \\ & 25 \text { A } 30 \text { VDC L/R } \geq 1 \\ & * 1 \text { A } 240 \text { VAC } \cos \varnothing=0.4 \end{aligned}$	$\begin{aligned} & 8 \text { A } 240 \text { VAC } \cos \varnothing=0.4) \\ & 8 \text { A } 240 \text { VAC } \cos \varnothing=1 \\ & 8 \text { A } 30 \text { VDC L/R } \geq 1 \\ & \text { *1 A } 240 \text { VAC } \cos \varnothing=0.4 \end{aligned}$

Note: Add the suffix "-KM" to the model number when ordering.
*These ratings are bifurcated contact ratings.

Reference

VDE approval: VDE0435 for electromagnetic relays IEC255 for relays

KEMA (File No. 97.9140.01)

Model	Coil ratings	Contact ratings
		NO contact
G7J-4A-B(P) (T) (Z)	$6,12,24,48,100$ VDC	Class AC1: 25 A at 220 VAC
G7J-2A2B(P) (T)	$24,50,100$ to 120, 200 to 240 VAC	11.5 A at 380 to 480 VAC
G7J-3A1B-B(P) (T) (Z)		Class AC3: 11.5 A at 220 VAC and 8.5 A at
		380 to 480 VAC
		Class AC $1: 1$ A at 220 VAC

Note: Add the suffix "-KM" to the model number when ordering.
*This rating is the bifurcated contact ratings.

Reference

KEMA approval: EN60947-4-1 for contacts
IEC947-4-1 for contacts

Engineering Data

Maximum Switching Power

Endurance

Number of samples: 5
Measurement conditions: Increase and decrease he specified shock gradually imposed in X, Y, and Z directions three times each with the Relay energized and not energized to check the shock values that cause the Relay to malfunction. Criteria: There must not be any contact separation for 1 ms or greater with a shock of $100 \mathrm{~m} / \mathrm{s}^{2}$ imposed when the coil is energized or with a shock of $20 \mathrm{~m} / \mathrm{s}^{2}$ when the coil is not energized.

Ambient Temperature vs. Must-operate and Must-release Voltage
G7J 100 to 120 VAC

G7J 24 VDC

Ambient Temperature vs.

 Coil Temperature RiseG7J-4A 100 to 120 VAC

G7J-4A 24 VDC

Motor Load

Item	G7J-4A-P, G7J-3A1B-P, G7J-4A-B, G7J-3A1B-B, G7J-4A-T, G7J-3A1B-T
Load	30,220 VAC, 2.7 kW (with a inrush current of 78 A and a breaking current of 13 A)
Endurance	Electrical: 100,000 operations min.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Screw Terminals with W-bracket

G7J-4A-B, G7J-4A-BZ, G7J-3A1B-B, G7J-3A1B-BZ, G7J-2A2B-B

Mounting Holes

Quick-connect Terminals with W-bracket
G7J-4A-T, G7J-4A-TZ, G7J-3A1B-T, G7J-3A1B-TZ, G7J-2A2B-T

Mounting Holes

PCB Terminals with PCB Mounting
G7J-4A-P, G7J-4A-PZ, G7J-3A1B-P, G7J-3A1B-PZ, G7J-2A2B-P

Terminal Arrangement/Internal Connections

Note: Terminals 43 and 44 of the G7J-4A-P(B)(T)(Z) and contacts 41 and 42 of the G7J-3A1B-P(B)(T)(Z) are bifurcated contacts.

Accessories (Order Separately)
 R99-04 W-bracket (for G5F)

Mounting Holes

PCB Terminal-equipped Relays weigh approximately 140 g . Be sure that the PCB is strong enough to support them. We recommend dual-side through-hole PCBs to reduce solder cracking from heat stress.
Mount the G7J with its test button facing downwards. The Relay may malfunction due to shock if the test button faces upwards. Be careful not to press the test button by mistake because the contacts will go ON if the test button is pressed.
Be sure to use the test button for test purposes only.
The test button is used for Relay circuit tests, such as a circuit continuity test. Do not attempt to switch the load with the test button.

Minute Loads

The G7J is used for switching power loads, such as motor, transformer, solenoid, lamp, and heater loads. Do not use the G7J for switching minute loads, such as signals. Use a Relay with a bifurcated contact construction for switching minute loads, in which case, however, only SPST-NO or SPST-NC output is obtained.

Soldering PCB Terminals

Be sure to solder the PCB terminals manually only. In the case of automatic soldering, some flux may stick to the test button and the G7J. As a result, the G7J may malfunction.
The G7J is not of enclosed construction. Therefore, do not wash the G7J with water or any detergent.

Connecting

Refer to the following diagram when connecting a wire with a screw terminal to the G7J.

Allow suitable slack on leads when wiring, and do not subject the terminals to excessive force.
Tightening torque: $0.98 \mathrm{~N} \bullet \mathrm{~m}$
Do not impose excessive external force on the G7J in the horizontal or vertical directions when inserting the G7J to the Faston receptacle or pulling the G7J out from the Faston receptacle. Do not attempt to insert or pull out more than one G7J Unit together.
Do not solder the tab terminals.

Terminal	Receptacle	Housing
\#250 terminal	AMP170333-1	AMP172076-1: natural
$(6.35 \mathrm{~mm}$ in width)	$(170327-1)$	AMP172076-4: yellow
	AMP170334-1	AMP172076-5: green
	$(170328-1)$	AMP172076-6: blue
	AMP170335-1	
	$(170329-1)$	

Note: Numbers in parentheses are for air feed use.

OPERATING COIL

Internal Connections of Coils

If a transistor drives the G7J, check the leakage current, and connect a bleeder resistor if necessary.
The AC coil is provided with a built-in full-wave rectifier. If a triac, such as an SSR, drives the G7J, the G7J may not release. Be sure to perform a trial operation with the G7J and the triac before applying them to actual use.

Slim Relays with Forcibly Guided

Contacts Conforming to EN
Standards
■ EN50205 Class A, approved by VDE.
■ Ideal for use in safety circuits in production machinery.

- Four-pole and six-pole Relays are available.
- The Relay's terminal arrangement simplifies PWB pattern design.

- Reinforced insulation between inputs and
 outputs. Reinforced insulation between some poles.
■ UL, CSA approval.
- CE marking.

Ordering Information

Relays with Forcibly Guided Contacts

Type	Sealing	Poles	Contacts	Rated voltage	Model
Standard	Flux-tight	4 poles	3PST-NO, SPST-NC	24 VDC	G7SA-3A1B
			DPST-NO, DPST-NC		G7SA-2A2B
		6 poles	5PST-NO, SPST-NC		G7SA-5A1B
			4PST-NO, DPST-NC		G7SA-4A2B
			3PST-NO, 3PST-NC		G7SA-3A3B

Sockets

Type		LED indicator	Poles	Rated voltage	Model
Track-mounting	Track mounting and screw mounting possible	No	4 poles	--	P7SA-10F
			6 poles		P7SA-14F
		Yes	4 poles	24 VDC	P7SA-10F-ND
			6 poles		P7SA-14F-ND
Back-mounting	PCB terminals	No	4 poles	--	P7SA-10P
			6 poles		P7SA-14P

Model Number Legend

G7SA- $-\frac{\square}{1} \frac{\square}{2}$ B

1. NO Contact Poles
$\begin{array}{ll}\text { 2: DPST-NO } \\ \text { 3. } & \\ \text { 3PST-NO }\end{array}$
2. NC Contact Poles

4: 4PST-NO
5: \quad 5PST-NO

1: SPST-NC
DPST-NC
3PST-NC

Ratings

- Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Max. voltage	Power consumption
24 VDC	4 poles: 15 mA	4 poles: $1,600 \Omega$	$75 \% \max .(\mathrm{V})$	$10 \% \mathrm{~min} .(\mathrm{V})$	$110 \%(\mathrm{~V})$	4 poles: Approx. 360 mW
	6 poles: 20.8 mA	6 poles: $1,152 \Omega$			6 poles: Approx. 500 mW	

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $\pm 15 \%$.
2. Performance characteristics are based on a coil temperature of $23^{\circ} \mathrm{C}$.
3. The value given for the maximum voltage is for voltages applied instantaneously to the Relay coil (at an ambient temperature of $23^{\circ} \mathrm{C}$) and not continuously.

Contacts

Load	Resistive load ($\cos \phi=1$)
Rated load	6 A at $250 \mathrm{VAC}, 6 \mathrm{~A}$ at 30 VDC
Rated carry current	6 A
Max. switching voltage	$250 \mathrm{VAC}, 125 \mathrm{VDC}$
Max. switching current	6 A
Max. switching capacity (reference value)	$1,500 \mathrm{VA}, 180 \mathrm{~W}$

Characteristics

Sockets

Model	Continuous current	Dielectric strength	Insulation resistance
P7SA-14 \square	6 A (see note 1)	$2,500 \mathrm{VAC}$ for 1 min . between poles	$100 \mathrm{M} \Omega \mathrm{min}$. (see note 2)

Note: 1. If the P7SA-1 $\square \mathrm{F}$ is used between 55 and $85^{\circ} \mathrm{C}$, reduce the continuous current (from 6 A) by 0.1 A for every degree.
2. Measurement conditions: Measurement of the same points as for the dielectric strength at 500 VDC.
3. When using the P7SA-1 \square F-ND at 24 VDC, use at an ambient operating temperature from -25 to $55^{\circ} \mathrm{C}$.

Relays with Forcibly Guided Contacts

Contact resistance		$100 \mathrm{~m} \Omega \max$. (The contact resistance was measured with 1 A at 5 VDC using the voltage-drop method.)
Operating time (see note 2)		20 ms max.
Response time (see note 2)		10 ms max. (The response time is the time it takes for the normally open contacts to open after the coil voltage is turned OFF.)
Release time (see note 2)		20 ms max.
Maximum operating frequency	Mechanical	36,000 operations/hr
	Rated load	1,800 operations/hr
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) (The insulation resistance was measured with a 500 -VDC megger at the same places that the dielectric strength was measured.)
Dielectric strength (see notes 3, 4)		Between coil contacts/different poles: $4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min (2,500 VAC between poles $3-4$ in 4 -pole Relays or poles $3-5,4-6$, and $5-6$ in 6 -pole Relays.) Between contacts of same polarity: $1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$
Durability	Mechanical	10,000,000 operations min. (at approx. 36,000 operations/hr)
	Electrical	100,000 operations min. (at the rated load and approx. 1,800 operations/hr)
Min. permissible load (see note 5) (reference value)		$5 \mathrm{VDC}, 1 \mathrm{~mA}$
Ambient temperature (see note 6)		Operating: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)

Ambient humidity	Operating: 35% to 85% Storage: 35% to 85%
Weight	4 poles: Approx. 22 g 6 poles: Approx. 25 g
Approved standards	EN61810-1 (IEC61810-1), EN50205, UL508, CSA22.2 No. 14

Note: 1. The values listed above are initial values.
2. These times were measured at the rated voltage and an ambient temperature of $23^{\circ} \mathrm{C}$. Contact bounce time is not included.
3. Pole 3 refers to terminals $31-32$ or $33-34$, pole 4 refers to terminals $43-44$, pole 5 refers to terminals $53-54$, and pole 6 refers to terminals 63-64.
4. When using a P7SA Socket, the dielectric strength between coil contacts/different poles is $2,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min .
5. Min. permissible load is for a switching frequency of 300 operations $/ \mathrm{min}$.
6. When operating at a temperature between $70^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, reduce the rated carry current (6 A at $70^{\circ} \mathrm{C}$ or less) by 0.1 A for each degree above $70^{\circ} \mathrm{C}$.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Relays with Forcibly Guided Contacts

```
G7SA-3A1B
G7SA-2A2B
```


Terminal Arrangement/ Internal Connection Diagram (Bottom View)

G7SA-3A1B

G7SA-2A2B

Terminal Arrangement/ Internal Connection Diagram (Bottom View)

G7SA-5A1B

G7SA-4A2B

G7SA-3A3B

Printed Circuit Board Design Diagram (Bottom View)
(0.1 tolerance)

Note: Terminals 23-24, 33-34, and 43-44 are normally open. Terminals 11-12 and 21-22 are normally closed.

Printed Circuit Board
Design Diagram
(Bottom View)
(0.1 tolerance)

- Sockets

Track-mounting Socket

P7SA-10F, P7SA-10F-ND

Note: The socket is shown with the finger cover removed.

Note: Only the -ND Sockets have LED indicators
Track-mounting Socket
P7SA-14F, P7SA-14F-ND

Note: Only the -ND Sockets have LED indicators

Terminal Installation/Internal Connection Diagram (Top View)

G7SA-2A2B Mounted

* This display circuit is available only for "-ND" models. Note: Terminals 23-24, 33-34, and 43-44 are normally
Mounting Hole Placement Diagram open. Terminals 11-12 and 21-2 are normally
closed.

Terminal Arrangement/Internal Connection Diagram (Top View)

- P7SA-10P Back-mounting Socket (for PCB)

P7SA-14P Back-mounting Socket (for PCB)

Terminal Arrangement/Internal Connection Diagram (Bottom View)

G7SA-5A1B
Mounted

G7SA-3A3B
Mounted

Note: Terminals 23-24, 33-34, 43-44 $53-54$, and 63-64 are normally open. Terminals 11-12, 21-22, and 31-32 are normally closed.

Precautions

CAUTION

Do not touch the terminal area of the Relays or the socket terminal area (charged area) while power is ON. Electric shock will result

Relays with Forcibly Guided Contacts

A Relay with Forcibly Guided Contacts is a Relay with which a safety category circuit can be configured.

Wiring

Use one of the following wires to connect to the P7SA-10F/10F-ND/14F/14F-ND.

$$
\begin{array}{ll}
\text { Stranded wire: } 0.75 \text { to } 1.5 \mathrm{~mm}^{2} \\
\text { Solid wire: } & 1.0 \text { to } 1.5 \mathrm{~mm}^{2}
\end{array}
$$

Tighten each screw of the P7SA-10F/10F-ND/14F/14F-ND to a torque of $0.98 \mathrm{~N} \cdot \mathrm{~m}$ securely.
Wire the terminals correctly with no mistakes in coil polarity, otherwise the G7SA will not operate.

Claening

The G7SA is not of enclosed construction. Therefore, do not wash the G7SA with water or detergent.

Forcibly Guided Contacts (from EN50205)

If an NO contact becomes welded, all NC contacts will maintain a minimum distance of 0.5 mm when the coil is not energized. Likewise if an NC contact becomes welded, all NO contacts will maintain a minimum distance of 0.5 mm when the coil is energized.

Correct Use

Relays with Forcibly Guided Contacts

While the Relay with Forcibly Guided Contacts has the previously described forcibly guided contact structure, it is basically the same as an ordinary relay in other respects. Rather than serving to prevent malfunctions, the forcibly guided contact structure enables another circuit to detect the condition following a contact weld or other malfunction. Accordingly, when a contact weld occurs in a Relay with Forcibly Guided Contacts, depending on the circuit configuration, the power may not be interrupted, leaving the Relay in a potentially dangerous condition (as shown in Fig. 1.).

To configure the power control circuit to interrupt the power when a contact weld or other malfunction occurs, and to prevent restarting until the problem has been eliminated, add another Relay with Forcibly Guided Contacts or similar Relay in combination to provide redundancy and a self-monitoring function to the circuit (as shown in Fig. 2).
The G9S/G9SA Safety Relay Unit, which combines Relays such as the Relay with Forcibly Guided Contacts in order to provide the above-described functions, is available for this purpose. By connecting a contactor with appropriate input and output to the Safety Relay Unit, the circuit can be equipped with redundancy and a self-monitoring function.

[^0]: $\uparrow \quad$ L_ New model
 Rated coil voltage

[^1]: - The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $\pm 10 \%$.

