

Components Catalogue

Contents

OMRON

Welcome	7 - 8
POWER RELAYS	9 - 156
Technical Information – Power & Signal Relays	9 - 28
Selection Guide	29 - 40
G5B	41 - 44
G5NB-E	45 - 48
G5SB	49 - 52
G6M	53 - 56
G6D	57 - 60
G6B	61 - 67
G2RG	68 - 71
G5Q-EU	72 - 75
G6RN	76 - 79
G5LE	80 - 84
G5LC-EU	85 - 88
G5C(E)	89 - 92
G6C	93 -101
<u>G2R</u>	102 - 122
G2RL	123 - 127
G4W	128 - 132
G8P	133 - 138
G4A	139 - 142
G9EA-1	143 - 149
G9EC-1	150 - 156

SIGNAL RELAYS	157 -273
Selection Guide	157 - 165
G5V-1	166 - 168
G2E	169 - 172
G6E	173 - 177
G6L	178 - 186
G6H	187 - 192
G6J	193 - 202
G6K	203 - 212
G6S	213 - 221
G5A	222 - 225
G5V-2	226 - 230
G6A	231 - 239
G6Y	240 - 245
G6K(U)-RF	246 - 249
G6Z	250 - 265
G6W	266 - 273

Contents

AUTOMOTIVE RELAYS	274 - 313
Selection Guide	274 - 277
G8N-1	278 - 282
G8ND-2	283 - 287
G8NW	288 - 292
G8QN	293 - 294
G8SN	295 - 296
G8SE	297 - 298
G8HN-J	299 - 304
G8HL	305 - 309
G8JN	310 - 311
G8JR	312 - 313

SOLID STATE RELAYS	314 - 347
Technical Information	314 - 318
Selection Guide	319 - 323
G3R/G3RD	324 - 327
G3M	328 - 331
G3MB	332 - 334
G3MC	335 - 339
G3S/G3SD	340 - 343
G3DZ	344 - 347

348 - 433
348 - 351
352 - 357
358 - 359
360 - 361
362 - 363
364 - 365
366 - 367
368 - 369
370 - 371
372 - 373
374 - 375
376 - 377
378 - 379
380 - 381
382 - 384
385 - 386

OMRON

Contents

G3VM-3(F)L

G3VM-353B/E

G3VM-401B/E

G3VM-401BY/EY

G3VM-601BY/EY

G3VM-4N(F)

G3VM-61H1 G3VM-201H1

G3VM-351H

G3VM-353H G3VM-401H

G3VM-62C1/F1 G3VM-352C/F

G3VM-W(F)L

G3VM-354C/F

G3VM-355C/F

G3VM-402C/F

G3VM-62J1

G3VM-202J1

G3VM-352J

G3VM-354J

G3VM-355J

G3VM-402J

OMRON

387 - 388

389 - 390

391 - 392

393 - 395

396 - 397

398 - 399 400 - 401

402 - 403

404 - 405 406 - 407

408 - 409 410 - 411

412 - 413

414 - 415

416 - 417

418 - 419

420 - 421

422 - 423

424 - 425

426 - 427

428 - 429

430 - 431

432 - 433

Contents

OMROF

SS-P	576 - 581
SSG	582 - 589
D2F	590 - 595
D2MQ	596 - 600
D3C	601 - 604
D2X	605 - 608
D3K	609 - 612
D3M	613 - 618
D2SW	619 - 624
D2VW	625 - 630
D2JW	631 - 635
D2HW	636 - 644
D2MC	645 - 649
D2D	650 - 657
D3D	658 - 661

DIP SWITCHES	662 - 690
Technical Information	662 - 664
Selection Guide	665 - 668
A6H	669 - 670
A6T/A6S	671 - 673
A6D/A6DR	674 - 676
A6E/A6ER	677 - 679
A6A	680 - 683
A6C/A6CV	684 - 686
A6R/A6RV	687 - 690

TACTILE SWITCHES	691 - 731
Techinical Information	691 - 693
Selection Guide	694 - 698
B3F	699 - 707
B3W	708 - 711
B3FS	712 - 714
B3SN	715 - 716
B3S	717 - 718
B3WN	719 - 720
B3J	721 - 723
B3DA	724 - 725
B3D	726 - 729
B32	730 - 731

1	ł		
	2	Pr.	
$\langle \rangle$	1/h	0	

GENERAL PURPOSE RELAYS	434 - 508
Technical Information	434 - 439
Selection Guide	440 - 442
MY	443 - 455
LY	456 - 468
G2RS	469 - 478
G7L	479 - 493
G7J	494 - 502
G7SA	503 - 508

MICROSWITCHES	509 - 659
Technical Information	509 - 520
Selection Guide	521 - 530
D3V	531 - 544
V	545 - 560
VX	561 - 567
SS	568 - 575

	ACC/ACCV
	A6R/A6RV
	TACTILE SWITCHES
1	Techinical Information
	Selection Guide
	B3F
	B3W/

Contents

Contents	

OMRON

862 - 864 865 - 867 868 - 870 871 - 873
865 - 867 868 - 870 871 - 873
868 - 870 871 - 873
871 - 873
07/ 076
0/4 - 0/0
877 - 881
882 - 884
885 - 887
888 - 890
891 - 894
895 - 897
898 - 900
901 - 904
905 - 908
909 - 911
010 011

LEDs	915 - 921
2MDR	915 - 921

922 - 935
922 - 923
924 - 926
927 - 928
929 - 930
931 - 933
934 - 935

CONNECTORS	936 - 968
XF2E	936 - 937
XF2H	938 - 939
XF2J	940 - 941
XF2L	942 - 943
XG4M-U	944 - 946
XG4	947 - 954
XM4	955 - 957
XH2	958 - 964
XM7	965 - 968

969 - 971

PHOTOMICROSENSORS	732 - 914
Technical Information	732 - 736
Selection Guide	737 - 738
EE-SX1107	739 - 743
EE-SX1018	744 - 746
EE-SX1108	747 - 751
EE-SX1131	752 - 756
EE-SX1139	757 - 759
EE-SX4139	760 - 762
EE-SX493	763 - 765
EE-SX1055	766 - 768
EE-SX1046	769 - 771
EE-SX1082	772 - 774
EE-SX1106	775 - 777
EE-SX1109	778 - 782
EE-SX199	783 - 785
EE-SX398/498	786 - 788
EE-SV3	789 - 791
EE-SX1071	792 - 794
EE-SX1088	795 - 797
EE-SH3	798 - 800
EE-SJ3	801 - 803
EE-SX3088/4088	804 - 806
EE-SG3	807 - 809
EE-SX1128	810 - 812
EE-SX1041	813 - 815
EE-SX1042	816 - 818
EE-SX1081	819 - 821
EE-SX1235A-P2	822 - 824
EE-SX4009-P1	825 - 827
EE-SX4019-P2	828 - 830
EE-SX3081/4081	831 - 833
EE-SX4009-P10	834 - 836
EE-SX4235A-P2	837 - 839
EE-SX1070	840 - 842
EE-SX3070/4070	843 - 845
EE-SPX415-P2	846 - 848
EE-SX461-P11	849 - 852
EE-SX414-P1	853 - 855
EE-SA102	856 - 858
EE-SA103	859 - 861

PART NUMBER INDEX

Welcome to the Omron Components Catalogue

Omron Components is a world-class business delivering a wide range of high quality, high performance components utilising latest technologies and backed by full technical, applications and logistical support.

We offer the widest range of relays for power, signal and automotive applications as well as solid-state and MOSFET relays. Our G3VM MOSFETS combine

the advantages of mechanical and solid-state technologies allowing design flexibility with either AC or DC load able to be connected in either direction. We are also developing our range of microsensors, and currently offer photomicrosensors and a new range of D8M-D8 micro pressure-sensors which meet stringent safety standards such as working reliably with low pressure, metal casing and flange fitting. Our broad range of switches includes micro, DIP, and tactile options, and you will find a wide selection of connectors to meet

industry-standard data interconnect, power transmission and signalling. Omron Double Reflection LEDs feature built-in optical light guide technology that more than doubles effective light output compared with conventional bullet-type LEDs. Environmental research and experience enabled us to formulate a policy to remove recognised hazardous substances from our products well within the timescales of European Directives. We have identified suitable alternative materials and agreed the changes we need to make to our production processes in order to maintain quality levels. All of our manufacturing sites have achieved ISO14001 certification for the management of environmental protection in our organisation.

Using our website alongside this catalogue, you can be kept fully up-to-date with our range of products, technical capabilities and environmental policy.

www.eu.omron.com/ocb

Omron Electronic Components Europe B.V. reserves the right to make any changes to the specifications, technical information and data of the components described in this catalogue at its sole discretion without prior notice Although we do strive for perfection, Omron Electronic Components Europe B.V. does not warrant or make any representations regarding the correctness or accuracy of the specifications, technical information and data of the components as described in this catalogue.

Luminous Intensity Rank Standard

	Luminous Intensity standards	
	Minimum	Maximum
Rank E	1000 mcd	1700mcd
Rank F	1700 mcd	3000mcd
Rank G	3000 mcd	5300mcd
Rank H	5300 mcd	9300mcd
Rank J	9300 mcd	16000mcd
Rank K	160000 mcd	-

Maximum and minimum values each have a tolerance of±15%. Ordering by single rank is not available

Precautions -

CAUTIONS

Blue, Bluish Green, and Green LEDs

Blue, bluish green, and green DR LEDs are very sensitive to surge voltages, such as those which occur in the event of electrostatic discharge. Extreme care in handling is required to protect the elements from damage and maintain LED reliability.

Make sure that the voltage applied to each LED does not exceed its absolute maximum rated voltage. Pay extreme attention to surge voltages resulting from turning the power supply ON and OFF.

HANDLING INSTRUCTIONS

Measures for Preventing Static Electrification and Electrostatic Discharge

If a human body charged with static electricity comes in contact with blue, green, or bluish green units, the semiconductor elements may be subject to electrostatic discharge damage. The unit may be charged by induction caused by a charged object nearby the unit or by friction; therefore in these cases, if the unit comes in contact with a conductive object such as metal, the unit may be damaged as a result of electrostatic discharge. Ensure the following measures are taken when working on the unit.

- 1. Keep the unit away from insulators that easily build up electrostatic charge.
- 2. Keep the unit away from processes where the unit will be subject to friction.
- 3. Ground any equipment, devices and tools such as manufacturing equipment and measuring machines that require grounding.
- 4. Use a conductive mat or similar product to provide an environment in order to keep away from electrostatic charges.
- 5. Use an earth band to ground the worker's body.
- 6. In the case of lead forming, the lead bending point must be at least 1.5mm away in the lead-end direction from the mould so that the mould will be free of forming stress. Solder the leads after lead forming.
- 7. Apply solder to the leads below the tie bars, because applying solder above the tie bars may not be possible due to thin burrs.

Subminiature PCB Mounting Sensor Discriminating Left or Right Tilt

- Detects the inclination of the Sensor within an activated angle range between 45° and 75° (left and right) and a reset angle range between 50° and 20°
- A subminiature SMD PCB mounting model
- A highly reliable solid-state type by Hall IC
- A surprisingly low power consumption with a maximum of 20µA

Ordering Information -----

Output configuration	Model
ON/OFF	D6B-1

Horizontal state

Application -

Vertical or horizontal discrimination of digital cameras, PDAs, and cellular phones.

Performance —

	Activated angle	45° to 75° (left and right)	
	Reset angle 50° and 20° (left and right)		
Operating characteristics		Note: Characteristic values are provided, on condition that there is no tilt back and forth while the operation speed is 10° per second. Horizontal state High Reset	
C O U	Horizontal state	High-voltage signal output from the terminals on both sides.	
nfig.	Inclined left or right	Low-voltage signal output only from the terminals on the side of the moving direction.	
	Ta = 25° and Vdd = 3V DC	2 7 to 3 3 V DC	
llec	Power supply voltage range (Vdd)		
trica	High-voltage output	Vdd-0.5V min.	
유	Low-voltage output	0.5V DC max.	
arac	Current consumption	20 μA max. (10 μA typical)	
teri	Maximum ratings	0.1 to 5.0 V	
stic	Power supply voltage (Vdd)	U.I LO D.U V	
"	Output current (lout)	± 1mA	
s m	Ambient temperature (operating)	-10°C to 60°C (with no condensation)	
3asio	Ambient temperature (storage)	-25°C to 70°C (with no condensation)	
<i>"</i> 0	Ambient humidity (operating)	25% to 85%	

Electrical Connections -

External Conditions

seconds.

Cautions

- . The Sensor does not use any materials detrimental to the ozone laver.
- · Specifications other than the electrical or mechanical characteristics, external dimensions, or mounting dimensions of the Sensor are subject to change without notice.

Handling Precautions

Operating Environment

- . The Sensor consists of a Hall IC and a magnet. Check that the Sensor in operation will not be influenced by any external magnetic fields.
- · Do not install any magnetic materials within 2 mm of the Sensor, else the performance characteristics of the Sensor may not be guaranteeable.
- If there are any objects (e.g., motors and solenoids) generating magnetic fields near the Sensor, operate and test the Sensor before the Sensor comes into actual use.
- . Do not apply any voltage exceeding 5V to the Sensor, else the Sensor may break.
- · Do not wash the Sensor after the Sensor is soldered.
- Do not mount or dismount the Sensor while power is flowing to the Sensor.
- . The Sensor may generate error signals if impacted at a minimum acceleration of 294 m/s².
- . The Sensor may generate error signals if a vibration at a minimum frequency of 15 Hz and a minimum acceleration of 15m/s² is applied to the Sensor.

Soldering Conditions -

Reflow (Infrared) Soldering Conditions

temperature will be 230 °C ± 5 °C.

Weld a thermocouple on the terminal side of the Sensor with

reflow oven and set the reflow oven so that the peak terminal

HMP (high melting point) solder, place the Sensor into the

The peak terminal temperature must not exceed 240 °C.

Dismount the Sensor at a temperature of 240 °C within five

If a soldering iron is applied manually, dismount the Sensor

within 10 seconds at an iron tip temperature of 260 °C or within three seconds at an iron tip temperature of 350 °C.

Dismounting Conditions with Blower Employed

· Confirm that no static electricity at a maximum voltage of 5kV is applied to the pins, else the Sensor may break.

OMRON

Operating Characteristics

The present output may be kept if the inclination of the Sensor back and forth is 20 ° or over. Under that condition, the output may not change even when the Sensor is leaned left or right.

If the Sensor is kent inclined back or forth as shown in the above illustration, the level of output may not change from high to low or low to high when the Sensor inclines left or right

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Air Flow detector specifically to detect clogged conditions in air filters on servers and other types of computer equipment

- Detects the clogged conditions of air filters more efficiently than a conventional time totalling meter
- Adopts a velocity of the wind monitor employing an NTC thermistor to output 0 to 5V analog voltage signals

Ordering Information -

	Model	
D6A-N		

Specifications -

Mounting method	Front secured with nylon rivets (see External Dimensions for the dimensions of the Sensor)	
Temperature device	NTC thermistor (epoxy resin coat)	
Detection method	Velocity of wind monitor method (80 °C own heating type)	
Connector	Japan Aviation Electronics Industry's IL-Z Series	
Operating temperature	0°C to 45°C (with no icing)	
Storage temperature	-25°C to + 65°C	
Operating humidity	25 to 85%RH	
Storage humidity	25 to 85%RH	
Applicable gas	Air	
Range of velocity of wind detection	0.5 to 1.5m/sec.	
Mounting direction	Mount the Sensor so that the ventilation opening will be located vertical to the wind direction.	
Drive power supply	12V DC asd ± 10%	
Operating environmental conditions	The Sensor must be free of oil, moisture, and/or dust. Otherwise, the thermal diffusion characteristics of the Sensor will change.	
Another ludge the degree of elements condition from a value of differential becader the initial values abtained when the filter is		

Caution: Judge the degree of clogging condition from a voltage differential based on the initial voltage obtained when the filter is clean. One minute will be required for the stabilization of the Sensor after the Sensor is turned on.

Performance -

Head	Test Method	Criteria
(1) Output voltage characteristics	 Power supply voltage: 12.0V DC Load resistance: 1MΩ Ambient temperature: 25 ± 5 degrees, Relative humidity: 25% to 85% RH 	Output range: 0.2 to 5.0V (0 to 1.5m/sec.) [Relative value] Based on output at a velocity of wind of 1.5m/sec. Output at velocity of wind of 1.0m/sec.: -1.80V ± 0.45V Output at velocity of wind of 0.5m/sec.: -4.25V ± 0.75V [Absolute value] (Reference value) • EVelocity of wind of 0.5m/sec.: Output at 0.25V ± 1.2V • EVelocity of wind of 1.0m/sec.: Output of 0.25V ± 1.2V • EVelocity of wind of 1.5m/sec.: Output of 4.50V ± 1.35V
(2) Temperature characteristics	 Power supply voltage: 12.0V DC Ambient temperature: 0°C to 45°C Relative humidity : 25% to 85% RH 	[Relative value] Based on output (at 25 °C) at a velocity of wind of 1.5m/sec. Output at velocity of wind of 1.0m/sec.: -1.80V ± 0.55V Output at velocity of wind of 0.5m/sec.: -4.25V ± 0.90V
(3) Max. output voltage	 Power supply voltage: 13.2V DC Velocity of the wind: 1.5m/sec. Ambient temperature: 25 ± 5°C Load resistance: 1MΩ 	5.2V max
(4) Current consumption	 Power supply voltage: 13.2V DC Measured velocity of the wind: 1.5m/sec. Ambient temperature: 25 ± 5°C Load resistance: 1MΩ 	60mA max.
(5) Insulation resistance	Measure the insulation resistance between the whole terminals and the sensor frame with a 100V DC insulation resistance tester	20MΩ min.
(6) Dielectric strength	Apply 500V AC for one minute between the whole terminals and the sensor frame.	Max. leak current of 1mA

Electrical Connections

Glogged Detector – D6A-N

Application Example -

External Dimensions

Cautions

HANDLING PRECAUTIONS

Storage

Pay the utmost attention as follows when storing the Sensor for long periods of time.

- (1) Select a storage venue in consideration of protecting the Sensor from dust and humidity.
- (2) Store the Sensor in the original packing materials

Mounting to Store computer

(1) Perform a safety check if the Sensor is dropped.

(2) Connect the Sensor to the connector securely.(3) Use Kitagawa Industries' NRP-345 nylon rivets to secure the

Sensor.

Precautions for Operation

- Do not apply a voltage of 13.2V DC or higher to the Sensor.
 Keep clean the thermistor during maintenance. The output
- (2) Keep clean the mermistor during maintenance. The output voltage of the thermistor will drop if there is any oil, moisture, and/or dust on the surface of the thermistor.
- (3) Do not bend the terminals of the thermistor while cleaning, otherwise the output voltage of the thermistor will drop.
- (4) Check that the PCB is free of water or moistened dust, otherwise the internal circuit will short-circuit.
- (5) A maximum of 12V DC is applied to the terminals of the thermistor.
- Do not touch them, otherwise an electric shock may be received. When incorporating the Sensor into your product, describe this precaution in the maintenance manual of the product.
- (6) When the Sensor is turned on, the thermistor will heat to approximately 80°C. Touching the thermistor may result in burns.

When incorporating the Sensor into your product, describe this precaution in the maintenance manual of the product.

(7) When disposing of the Sensor, be mindful of necessary risk prevention and environmental maintenance.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

Micro Pressure Sensor – D8M-A1

OMRON

Micro Pressure Sensor – D8M-A1

Analogue output

- Pressure range 0 to 4.9kPa
- Current Consumption 2.5mA (supply voltage 2.2±0.01V, load resistance 1MΩ min., supply pressure 4.9kPa)
- Temperature compensated over full range -30° to 70°C
- Supply Voltage 2.2±0.1VDC
- Output resistance 500 Ω
- Protection Structure IP40

Recommended Operating Condition -

Characteristics -

Output Voltage	15 to 1247mV (at the central value)
Repeatability & Hysteresis	±0.5%
Operating Temperature	-30° to 70°C
Storage Temperature	-40° to 80°C
Operating Humidity	25 to 95%
Insulation Resistance	$100Mz\Omega$ min (250VDC between load terminals and base)
Dielectric Withstand	250VAC 50/60Hz for 1 min
Material	Case: PBT(poly-butylene-teleftaret) Base: PBT(poly-butylene-teleftaret)
Withstand Pressure	0.1MPa (3 minutes)

 $V_{CC} - V_{OH}$

TERMINAL ARRANGEMENT (TOP VIEW)

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

Micro Pressure Sensor – D8M-D82

OMRON

Digital output

- High noise immunity
- Pressure range 0 to 5.88kPa
- Current consumption150mA ±5% at output 3VDC
- Temperature compensated over full range -30°C to 70°C
- Protection Structure IP 40

Recommended Operating Condition -

Parameter	Item	Condition	Min.	Max.	Unit
V _{CC}	Supply voltage	-	2.2	3.4	V
V _{OH}	High output voltage	$V_{CC} = 3V$, $I_{OH} = 500 \mu A$	V _{CC} -3V	-	V
V _{OL}	Low output voltage	V _{CC} = 3V, I _{OL} = 500μA	-	V _{CC} +3V	V

Timing Characteristics -

Output resolution	0.1 kPa/1 pulse
Output frequency	150 ~ 450kHz
Output pulse	0 to 550 pulses (at the central value)

T1 : Pressure measurement time	2.5ms min.
T2 : Response time	18ms max.
T3 : Electrical discharge time	100ms min.

Response Time (Timing Chart)

Micro Pressure Sensor – D8M-D82

OMROF

Characteristics -

Repeatability & Hysteresis	±0.5%	
Operating Temperature	-30° to 70°C	
Storage Temperature	-40° to 80°C	
Operating Humidity	25 to 95%	
Insulation Resistance	100M Ω min (250VDC between load terminals and base)	
Dielectric Withstand	250VAC 50/60Hz for 1 min	
Material	Case: PBT (poly-butylene-teleftaret) Base: PBT (poly-butylene-teleftaret)	
Withstand Pressure	58.8kPa (3 minutes)	

Recommened Interface Circuit -

Pin No.1: Vcc 100kΩ ≥ Microcomputer D8M-D1 Pin No.2: Output ≤ 680kΩ Microcomputer Pin No.3: Vss Circuit Board Circuit Board

MIN 0.2

12.4±0.4

.

0.5

MEMS Flow Sensor – D6F

High accuracy mass flow sensing

- Small size
- Fast response
- Applicable to air, non-corrosive gas, LNG
- Applications include: Medical equipment
 - Analysis apparatus Combustion control

OMRON

Ordering Information -

Model	Case	Gsa	Flow Range	Notes
D6F-01A1-110	PPS	Air*	0-1L/min	Integral orifice
D6F-02A1-110			0-2L/min	
D6F-05N2-000	Aluminum	LNG* (13A)	0-5L/min	

Ratings -

Absolute Maximum Rating

Item	Symbol	Rating	Unit
Power Supply	V _{cc}	26.4	VDC
Output Voltage	Vout	6	VDC

Recommendation Condition

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply	V _{cc}	-	10.8	-	26.4	VDC
Operating Temperature	T	-	-10	-	60	°C
Output Voltage (Max.)	V _{OH}	V_{cc} = 12 to 24VDC I_{OH} = 5mA	5	-	5.7	VDC
Output Voltage (Min.)	V _{ol}	$V_{\rm cc}$ $_{=}$ 12 to 24VDC $I_{\rm OH}$ =-5mA	0	-	1	VDC

MEMS Flow Sensor – D6F

Characteristics -

Model	D6F-01A1-110	D6F-02A1-110	D6F-05N2-000
Rated quality range	0-1L/min		0-5L/min
Joint type	Bamboo type (Bamboo min. extern Bamboo max. external diameter: 8	al diameter: 7.4mm, .6mm) (passage diameter: 4mm)	Rc 1/4 Screw
Case material	PPS		Aluminum
Applicable fluid	Air*		LNG*
Withstand pressure	200kPa		
Repeat accuracy	±3% F.S. max		
Operating temperature	-10 to 60 degrees (with no icing or condensation)		
Operating humidity	Under 85% RH (with no icing or condensation)		
Storage temperature	-40 to 80 degrees (with no icing or condensation)		
Storage humidity	Under 85% RH (with no ice or no dew)		
Output signal	Analog Output 1-5 VDC		
Current consumption	No-load V_{cc} = 12 to 24VDC, V_{ss} = 0V 25 deg. C, Max. 15mA		
Insulation resistance	More than 20M Ohm (500VDC, between lead terminal and case)		
Dielectric strength	500VAC, 50/60Hz, for 1 minute. (Leakage current typ < 1mA.) Between the lead terminals and the base		
Orifice	Integral	Integral	Not applicable

Dimensions -

(All dimensions in mm)

D6F-01A-110 D6F-02A-110

(All dimensions in mm) D6F-05N2-000

Sealed Tilt Switch – D7E

Pure mechanical vibration detector

Sealed enclosure

Output capacity from 0.1A at 5VDC to 100A at 30VDC

OMRON

Ordering Information

Model	Operating Angle
D7E-3	50 to 80 degrees

Characteristics -

Model	D6F-01A1-110
Operating Angle	Tilt of 50 to 80 degrees.
	The value of tilt degree is specified when the switch is tilted gradually (approx. 1 degree/s) from the horizontal.
Returning Angle	Tilt of more than 25 degrees. The value of tilt degree is specified when the switch is tilted gradually (approx. 1 degree/s) from the horizontal
Permissible Mounting Level	1 degree max. from the horizontal
Contact Form	Single pole single throw (NC contact / slow action)
Mounting	Pitch: 30mm 2 screws (M3)
	Height: 5.3mm
Soldering	Soldering iron: temperature 350±10°, 3 sec. MAX
Ratings	5VDC, 0.1mA to 30VDC, 100mA (Resistive load)
Insulation Resistance	$100 M\Omega$ MIN. (250VDC, between each terminal of the same polarity To measure off condition
Contact Resistance	300m Ohm MAX. (Initial value)
Vibration During Transportation	Condition: Vibration: 200 gal (1cycle: 0.5 sec.) Vibration direction: 2 axial directions Time: Total 50 hours
Shock	Condition: Acceleration: 980 m/s ² 3 times Shock direction: 3 axial directions
Operating temperature and humidity	Temperature: -25 degrees to +60 degrees (with no icing and condensation) Humidity: 45 to 95 % RH
Storage temperature and humidity	Temperature: -25 degrees to +60 degrees (with no icing and condensation) Humidity: 45 to 95 % RH Protection
Protection	IP67

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

(All dimensions in mm)

Non-ZIF Type – XF2E

Optimum low-profile design (SMT Terminal).

Ultra-low-profile FPC/FFC connector only 1.5mm above the PCB.

- Side-entry
- Ultra-low-profile only 1.5 mm on the PCB allows mounting in spaces with restricted height.
- 0.8 mm-pitch SMT connectors allow high-density mounting.
- Modified-PA-resin housing is compatible with VPS, IR reflow, etc
- Double-sided contacts maintain a stable contact force.
- Standard tape packing compatible with automatic mounting.

Specifications -

Rated Current	0.5A
Rated Voltage	50 VDC
Contact resistance	30 mΩ max. (max. 20 mV, max. 100 mA)
Insulation resistance	100 MΩ min. (at 100 VDC)
Withstand voltage	500 VAC 1 min. (leakage current: 1 mA max.)
Total insertion force	Poles x 2.0 N (200 gf) max.
Total removal force	Poles x 0.3 N (200 gf) max.
Insertion tolerance	10 times
Ambient temperature	-30 to +85°C (No condensation at low temperatures.)

Materials/Finish

Housing	Modified PA resin containing glass (UL94V-0)/opal		
Contact	Copper-alloy/nickel spring substrate (2µm) plated with tin alloy (2µm)		
Hold Down Copper-alloy/copper substrate (2µm) plated with tin alloy (2µm)			

Ordering Information

Poles	Model	Poles	Model	Quantity per reel*
5	XF2E-0515-1	10	XFE-1015-1	4,000
6	XF2E-0615-1	12	XFE-1215-1	
7	XF2E-0715-1	15	XFE-1515-1	
8	XF2H-0815-1	17	XFE-1715-1	

*Order an integer multiple of the quantity per reel.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

