OmROn

Components Catalogue

Contents		OInROn
	G3VM-3(F)L	387-388
	G3VM-353B/E	389-390
	G3VM-401B/E	391-392
	G3VM-4N(F)	393-395
	G3VM-401BY/EY	396-397
	G3VM-601BY/EY	398-399
	G3VM-61H1	400-401
	G3VM-201H1	402-403
	G3VM-351H	404-405
	G3VM-353H	406-407
	G3VM-401H	408-409
	G3VM-62C1/F1	410-411
	G3VM-352C/F	412-413
	G3VM-W(F)L	414-415
	G3VM-354C/F	416-417
	G3VM-355C/F	418-419
	G3VM-402C/F	420-421
	G3VM-62J1	422-423
	G3VM-202J1	424-425
	G3VM-352J	426-427
	G3VM-354J	428-429
	G3VM-355J	430-431
	G3VM-402J	432-433
	GENERAL PURPOSE RELAYS	434-508
	Technical Information	434-439
	Selection Guide	440-442
	MY	443-455
	LY	456-468
	G2RS	469-478
	G7L	479-493
	G7J	494-502
	G7SA	503-508
7	MICROSWITCHES	509-659
	Technical Information	509-520
	Selection Guide	521-530
	D3V	531-544
	V	545-560
	VX	561-567
	SS	568-575

Contents

GENERAL PURPOSE RELAYS	$434-508$
Technical Information	$434-439$
Selection Guide	$440-442$
MY	$443-455$
LY	$456-468$
G2RS	$469-478$
G7L	$479-493$
G7J	$494-502$

SS-P	$576-581$
SSG	$582-589$
D2F	$590-595$
D2MQ	$596-600$
D3C	$601-604$
D2X	$605-608$
D3K	$609-612$
D3M	$613-618$
D2SW	$619-624$
D2VW	$625-630$
D2JW	$631-635$
D2HW	$636-644$
D2MC	$645-649$
D2D	$650-657$
D3D	$658-661$

DIP SWITCHES	$662-690$
Technical Information	$662-664$
Selection Guide	$665-668$
A6H	$669-670$
A6T/A6S	$671-673$
A6D/A6DR	$674-676$
A6E/A6ER	$677-679$
A6A	$680-683$
A6C/A6CV	$684-686$
A6R/A6RV	$687-690$

TACTILE SWITCHES	$691-731$
Techinical Information	$691-693$
Selection Guide	$694-698$
B3F	$699-707$
B3W	$708-711$
B3FS	$712-714$
B3SN	$715-716$
B3S	$717-718$
B3WN	$719-720$
B3J	$721-723$
B3DA	$724-725$
B3D	$726-729$
B32	$730-731$

OmROn

PHOTOMICROSENSORS	732-914
Technical Information	732-736
Selection Guide	737-738
EE-SX1107	739-743
EE-SX1018	744-746
EE-SX1108	747-751
EE-SX1131	752-756
EE-SX1139	757-759
EE-SX4139	760-762
EE-SX493	763-765
EE-SX1055	766-768
EE-SX1046	769-771
EE-SX1082	772-774
EE-SX1106	775-777
EE-SX1109	778-782
EE-SX199	783-785
EE-SX398/498	786-788
EE-SV3	789-791
EE-SX1071	792-794
EE-SX1088	795-797
EE-SH3	798-800
EE-SJ3	801-803
EE-SX3088/4088	804-806
EE-SG3	807-809
EE-SX1128	810-812
EE-SX1041	813-815
EE-SX1042	816-818
EE-SX1081	819-821
EE-SX1235A-P2	822-824
EE-SX4009-P1	825-827
EE-SX4019-P2	828-830
EE-SX3081/4081	831-833
EE-SX4009-P10	834-836
EE-SX4235A-P2	837-839
EE-SX1070	840-842
EE-SX3070/4070	843-845
EE-SPX415-P2	846-848
EE-SX461-P11	849-852
EE-SX414-P1	853-855
EE-SA102	856-858
EE-SA103	859-861

Welcome to the Omron Components Catalogue

Omron Components is a world-class business delivering a wide range of high quality, high performance components utilising latest technologies and backed by full technical, applications and logistical support.

We offer the widest range of relays for power, signal and automotive applications as well as solid-state and MOSFET relays. Our G3VM MOSFETS combine
 the advantages of mechanical and solid-state technologies allowing design flexibility with either AC or DC load able to be connected in either direction. We are also developing our range of microsensors, and currently offer photomicrosensors and a new range of D8M-D8 micro pressure-sensors which meet stringent safety standards such as working reliably with low pressure, metal casing and flange fitting. Our broad range of switches includes micro, DIP, and tactile options, and you will find a wide selection of connectors to meet
 industry-standard data interconnect, power transmission and signalling. Omron Double Reflection LEDs feature built-in optical light guide technology that more than doubles effective light output compared with conventional bullet-type LEDs.

Environmental research and experience enabled us to formulate a policy to remove recognised hazardous substances from our products well within the timescales of European Directives. We have identified suitable alternative materials and agreed the changes we need to make to our
 production processes in order to maintain quality levels. All of our manufacturing sites have achieved ISO14001 certification for the management of environmental protection in our organisation.

Using our website alongside this catalogue, you can be kept fully up-to-date with our range of products, technical capabilities and environmental policy.
www.eu.omron.com/ocb

Omron Electronic Components Europe B.V. reserves the right to
make any changes to the specifications, technical information make any changes to the specifications, technical information
and data of the components described in this catalogue at its sole discretion without prior notice

Although we do strive for perfection, Omron Electronic Components Europe B.V. does not warrant or make any specifications, technical information and data of the components as described in this catalogue.

Selection Guide - Signal Relays
OmROn

Model		G5V-1	G2E		G6E
Features		Slim single in-line miniature relay	Miniature,	cost relay	Sub-miniature, sensitive relay
Dimensions			$\begin{aligned} & 15.5 \\ & \times 10.5 \\ & \times 11.5 \end{aligned}$		
Contact Ratings	Contact Form	SPDT	SPDT		SPDT
	Contact Type	Single Crossbar	Single Crossba	Bifurcated Crossbar	Bifurcated Crossbar
	Contact Material	Ag (Au-clad)	AgPg (Au-clad)		Ag (Au-clad)
	Resistive Load	0.5 A at 125 VAC 1 A at 24 VDC	0.5 A at 110 VAC 1 A at 24 VDC		0.4 A at 125 VAC 12 A at 30 VDC
	Max. Switching Current	1 A	1 A		3 A
	Min. Permissible load	1 mA at 5 VDC	1 mA at 5 VDC	$10 \mu \mathrm{~A}$ at 10 mVDC	$10 \mu \mathrm{~A}$ at 10 mVDC
	Max. Switching Power	$125 \mathrm{VA}, 90 \mathrm{~W}$	$120 \mathrm{VA}, 30 \mathrm{~W}$		$50 \mathrm{VA}, 60 \mathrm{~W}$
	Max. Switching Voltage	270 VAC, 60 VDC	$125 \mathrm{VAC}, 60 \mathrm{VDC}$		250 VAC, 220 VDC
Coil ratings	Rated Voltage	3 to 24 VDC	1.5 to 24 VDC		3 to 48 VDC
	Power Consumption (Approx.)	150 mW	450 mW (200 mW high sensitivity version)		200 to 400 mW
Endurance	Electrical (operations)	100,000 min	200,000 min		100,000 min
	Mechanical (operations)	5,000,000 min	10,000,000 min		100,000,000 min
Dialectric strength	Between coil and contacts	1,000 VAC	500 VAC		1,500 VAC
	Between contacts of different polarity	-	-		-
	Between contacts of same polarity	400 VAC	500 VAC		1,000 VAC
Ambient temperature (operating)		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Variations	Single Side Stable	-	-		-
	Single Winding Latching				-
	Double Winding Latching				-
	Through Hole	-			-
	Surface Mount				
	Fully Sealed	-			-
Approved	Standards	UL, CSA	UL, CSA		UL, CSA
Page		166	169		173

Selection Guide - Signal Relays
omron

| Model | G6L | G6H |
| :--- | :--- | :--- | :--- | :--- |
| Features | Ultra-thin flat relay | Ultra-small relay with 5mm height |

Model		G6J			
Features		Ultra compact and slim relay			
Dimensions (LxWxH)			G6J-2FL $\begin{aligned} & 10.3 \\ & \times 5.2 \\ & \times 10.0 \end{aligned}$	G6J-2P $\begin{aligned} & 10.3 \\ & \times 5.2 \\ & \times 9.0 \end{aligned}$	
Contact Ratings	Contact Form	DPDT			
	Contact Type	Bifurcated Crossbar			
	Contact Material	Ag (Au alloy contact)			
	Resistive Load	0.3 A at 125 VAC 1 A at 30 VDC			
	Max. Switching Current	1 A			
	Min. Permissible load	$1 \mu \mathrm{~A}$ at 10 mVDC			
	Max. Switching Power	$37.5 \mathrm{VA}, 30 \mathrm{~W}$			
	Max. Switching Voltage	$125 \mathrm{VAC}, 110 \mathrm{VDC}$			
Coil ratings	Rated Voltage	3 to 24 VDC			
	Power Consumption (Approx.)	140 to 230 mW			
Endurance	Electrical (operations)	100,000 min			
	Mechanical (operations)	50,000,000 min			
Dialectric strength	Between coil and contacts	1,500 VAC			
	Between contacts of different polarity	1,000 VAC			
	Between contacts of same polarity	750 VAC			
Ambient temperature (operating)		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			
Variations	Single Side Stable	-			
	Single Winding Latching	-			
	Double Winding Latching				
	Through Hole	-			
	Surface Mount	-			
	Fully Sealed	-			
Approved Standards		UL, CSA			
Page		193			

Model		G6S				
Features		Surface mounting relay with 2.5 kV surge voltage				
Dimensions (LxWxH)					$\begin{gathered} \text { G6S-2G } \\ \substack{157.5 \\ \times 9.4} \end{gathered} L_{1}$	
Contact Ratings	Contact Form	DPDT				
	Contact Type	Bifurcated Crossbar				
	Contact Material	Ag (Au alloy contact)				
	Resistive Load	0.5 A at 125 VAC , 1 A at 30 VDC				
	Max. Switching Current	2 A				
	Min. Permissible load	$10 \mu \mathrm{~A}$ at 10 mVDC				
	Max. Switching Power	$62.5 \mathrm{VA}, 60 \mathrm{~W}$				
	Max. Switching Voltage	$250 \mathrm{VAC}, 220 \mathrm{VDC}$				
Coil ratings	Rated Voltage	4.5 to 24 VDC				
	Power Consumption (Approx.)	140 to 200 mW				
Endurance	Electrical (operations)	100,000 min				
	Mechanical (operations)	100,000,000 min				
Dialectric strength	Between coil and contacts	2,000 VAC				
	Between contacts of different polarity	1,500 VAC				
	Between contacts of same polarity	1,000 VAC				
Ambient temperature (operating)		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				
Variations	Single Side Stable	-				
	Single Winding Latching	-				
	Double Winding Latching	-				
	Through Hole	-				
	Surface Mount	-				
	Fully Sealed	-				
Approved Standards		UL, CSA				
Page		213				

Selection Guide - Signal Relays
omron

Model		G5A	G5V-2
Features		Sub-miniature relay	Miniature relay for signal circuits
Dimensions (LxWxH)		$16 \times 9.9 \times 8.4$	$20.5 \times 10.1 \times 11.5$
Contact Ratings	Contact Form	DPDT	DPDT
	Contact Type	Bifurcated Crossbar	Bifurcated Crossbar
	Contact Material	Ag (Au-clad)	Ag (Au-clad)
	Resistive Load	0.5 A at 30 VAC 1 A at 30 VDC	0.5 A at 125 VAC 2 A at 30 VDC
	Max. Switching Current	1 A	2 A
	Min. Permissible load	$10 \mu \mathrm{~A}$ at 10 mVDC	$10 \mu \mathrm{~A}$ at 10 mVDC
	Max. Switching Power	$37.5 \mathrm{VA}, 33 \mathrm{~W}$	62.5 VA, 60 W
	Max. Switching Voltage	$125 \mathrm{VAC}, 60 \mathrm{VDC}$	$125 \mathrm{VAC}, 125 \mathrm{VDC}$
Coil ratings	Rated Voltage	3 to 48 VDC	3 to 48 VDC
	Power Consumption (Approx.)	200 to 280 mW	500 to 580 mW (150 mW high sensitivity version)
Endurance	Electrical (operations)	100,000 min	100,000 min
	Mechanical (operations)	50,000,000 min	15,000,000 min
Dialectric strength	Between coil and contacts	1,000 VAC	1,000 VAC
	Between contacts of different polarity	1,000 VAC	1,000 VAC
	Between contacts of same polarity	500 VAC	750 VAC
Ambient temperature (operating)		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Variations	Single Side Stable		-
	Single Winding Latching		
	Double Winding Latching		
	Through Hole		-
	Surface Mount		
	Fully Sealed		-
Approved Standards		UL, CSA	UL, CSA
Page		222	226

Selection Guide - Signal Relays
omron

Model		G6A				G6Y
Features		Fully sealed relay with high surge dielectric for use in telecommunications equipment				High frequency relay with high isolation and low insertion loss
Appearance Dimensions (LxWxH)						
Contact Ratings	Contact Form	DPDT		4PDT		SPDT
	Contact Type	Bifurcated Crossbar				Double-braking contact
	Contact Material	Ag (Au-clad)	AgPg (Au-clad)	Ag (Au-clad)	AgPg (Au-clad)	Au
	Resistive Load	0.5 A at 125 VAC 2 A at 30 VDC	0.3 A at 125 VAC 1 A at 30 VDC	0.5 A at 125 VAC 2 A at 30 VDC	0.3 A at 125 VAC 1 A at 30 VDC	10 mA at 30 VAC 10 mA at 30 VDC
	Max. Switching Current	2 A				0.5 A
	Min. Permissible load	$10 \mu \mathrm{~A}$ at 10 mVDC				$10 \mu \mathrm{~A}$ at 10 mVDC
	Max. Switching Power	$125 \mathrm{VA}, 60 \mathrm{~W}$				10 VA (AC) 10 W (DC)
	Max. Switching Voltage	$250 \mathrm{VAC}, 220 \mathrm{VDC}$				30 VAC, 30 VDC
Coil ratings	Rated Voltage	3 to 48 VDC				3 to 24 VDC
	Power Consumption (Approx.)	200 to 235 mW		360 mW		200 mW
Endurance	Electrical (operations)	500,000 min				300,000 min
	Mechanical (operations)	100,000,000 min				50,000,000 min
Dialectric strength	Between coil and contacts	1,000 VAC				1,000 VAC
	Between contacts of different polarity	1,000 VAC				1,000 VAC
	Between contacts of same polarity	1,000 VAC				1,000 VAC
Ambient temperature (operating)		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Variations	Single Side Stable	-				-
	Single Winding Latching	-				
	Double Winding Latching	-				
	Through Hole	-				-
	Surface Mount					
	Fully Sealed			-		-
Approved Standards		UL, CSA				-
Page		231				240

Selection Guide - Signal Relays

| Model | G6K(U)-2F-RF | G6Z |
| :--- | :--- | :--- | :--- | :--- |
| Features | Surface mounting 1 GHz
 band high frequency relay | Surface mountable 2.6GHz band miniature relay |

Selection Guide - Signal Relays
OmROn

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Model} \& \multicolumn{2}{|l|}{G6W}

\hline \multicolumn{2}{|l|}{Features} \& \multicolumn{2}{|l|}{Surface mountable 2.5 GHz band miniature high-frequency relay}

\hline Appearan

Dimension
(LxWxH) \& \& \& G6W-1P

$$
20 \times 9.4 \times 9.3
$$

\hline \multirow[t]{8}{*}{Contact Ratings} \& Contact Form \& \multicolumn{2}{|l|}{SPDT}

\hline \& Contact Type \& \multicolumn{2}{|l|}{Double-braking single contact}

\hline \& Contact Material \& \multicolumn{2}{|l|}{Au}

\hline \& Resistive Load \& \multicolumn{2}{|l|}{10 mA at 30 VAC 10 mA at 30 VDC}

\hline \& Max. Switching Current \& \multicolumn{2}{|l|}{0.5 A}

\hline \& Min. Permissible load \& \multicolumn{2}{|l|}{$10 \mu \mathrm{~A}$ at 10 mVDC}

\hline \& Max. Switching Power \& \multicolumn{2}{|l|}{$10 \mathrm{VA}(\mathrm{AC}), 10 \mathrm{~W}$ (DC)}

\hline \& Max. Switching Voltage \& \multicolumn{2}{|l|}{$230 \mathrm{VAC}, 30 \mathrm{VDC}$}

\hline \multirow[t]{2}{*}{Coil ratings} \& Rated Voltage \& \multicolumn{2}{|l|}{3 to 48 VDC}

\hline \& Power Consumption (Approx.) \& 200 to 360 mW \& 360 mW

\hline \multirow[t]{2}{*}{Endurance} \& Electrical (operations) \& \multicolumn{2}{|l|}{300,000 min}

\hline \& Mechanical (operations) \& \multicolumn{2}{|l|}{1,000,000 min}

\hline \multirow[t]{3}{*}{Dialectric strength} \& Between coil and contacts \& \multicolumn{2}{|l|}{1,000 VAC}

\hline \& Between contacts of different polarity \& \multicolumn{2}{|l|}{-}

\hline \& Between contacts of same polarity \& \multicolumn{2}{|l|}{500 VAC}

\hline \multicolumn{2}{|l|}{Ambient temperature (operating)} \& \multicolumn{2}{|l|}{$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$}

\hline \multirow[t]{6}{*}{Variations} \& Single Side Stable \& \multicolumn{2}{|c|}{-}

\hline \& Single Winding Latching \& \multicolumn{2}{|c|}{-}

\hline \& Double Winding Latching \& \multicolumn{2}{|c|}{-}

\hline \& Through Hole \& \multicolumn{2}{|c|}{-}

\hline \& Surface Mount \& \multicolumn{2}{|c|}{-}

\hline \& Fully Sealed \& \multicolumn{2}{|c|}{-}

\hline \multicolumn{2}{|l|}{Approved Standards} \& \multicolumn{2}{|l|}{-}

\hline \multicolumn{2}{|l|}{Page} \& \multicolumn{2}{|l|}{266}

\hline
\end{tabular}

PCB Signal Relay - G5V-1
omROn
Ultra-miniature, Highly Sensitive SPDT Relay for Signal Circuits
■ Ultra-miniature at $12.5 \times 7.5 \times 10 \mathrm{~mm}$
($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$).

- Wide switching power of 1 mA to 1 A .

■ High sensitivity: 150 mW nominal coil power.

- Fully sealed construction.

■ International 2.54 mm terminal pitch.

- Conforms to FCC Part 68 requirements for coil to contacts.

Ordering Information

Classification				Model
Contact form	Contact type	Contact material	Structure	
SPDT	Single crossbar	Ag + Au-clad	Fully sealed	G5V-1

Note: When ordering, add the rated coil voltage to the model number.
Example: G5V-1 12 VDC
Rated coil voltage

Model Number Legend
G5V - $\square \square$ VDC
12 1. Contact Form $\begin{array}{ll}\text { Cis } \\ 1: S P D T & \text { 2. Rated Coil Voltage } \\ 3,5,6,9,12,24 \text { VDC }\end{array}$

Specifications

- Coil Ratings

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current		50 mA	30 mA	25 mA	16.7 mA	12.5 mA	6.25 mA
Coil resistance		60Ω	167 ת	240Ω	540Ω	960Ω	3,840 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.05	0.15	0.20	0.45	0.85	3.48
	Armature ON	0.11	0.29	0.41	0.93	1.63	6.61
Must operate voltage		80\% max. of rated voltage					
Must release voltage		10\% min. of rated voltage					
Max. voltage		200\% of rated voltage at $23^{\circ} \mathrm{C}$					
Power consumption		Approx. 150 mW					

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$

- Contact Ratings

Load	Resistive load $(\cos \varnothing=1)$
Rated Load	0.5 A at $125 \mathrm{VAC} ; 1 \mathrm{~A}$ at 24 VDC
Contact Material	$\mathrm{Ag}+\mathrm{Au}$-clad
Rated Carry Current	2 A
Max. switching voltage	$125 \mathrm{VAC}, 60 \mathrm{VDC}$
Max. switching current	1 A
Max. switching power	$62.5 \mathrm{VA}, 30 \mathrm{~W}$
Failure rate (reference value)	1 mA at 5 VDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

- Characteristics

Contact resistance	$100 \mathrm{~m} \Omega$ max.				
Operate time	5 ms max. (mean value: approx. 2.5 ms)				
Release time	5 ms max. (mean value: approx. 0.9 ms)				
Bounce Time	Operate: Approx. 0.2 ms Release: Approx. 5 ms				
Max. operating frequency	Mechanical: 36,000 operations $/ \mathrm{hr}$ Electrical: 1,800 operations $/ \mathrm{hr}$ at rated load				
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC between coil and contacts, at 250 VDC between contacts of same polarity.)	$	$	Dielectric strength	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $400 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
:---	:---				
Impulse withstand voltage	$1,500 \mathrm{~V} \mathrm{(10} \mathrm{\times 160} \mu \mathrm{~s}$) between coil and contacts (conforms to FCC Part 68)				
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude $(3.3 \mathrm{~mm}$ double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude)				
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$				
Endurance	Mechanical: $5,000,000$ operations min. (at 18,000 operations $/ \mathrm{hr)}$ Electrical: 100,000 operations min. (under rated load, at 1,800 operations $/ \mathrm{hr}$)				
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)				
Ambient humidity	Operating: 5% to 85%				
Weight	Approx. 2 g				

■ Approved Standards

UL1950 (File No. E41515)/CSA C22.2 No.0, No. 14 (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings
G5V-1	SPDT	3 to 24 VDC	$0.5 \mathrm{~A}, 125 \mathrm{VAC}$ (general use)
			$0.3 \mathrm{~A}, 110 \mathrm{VDC}$ (resistive load)
$1 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive load)			

Engineering Data

Switching voltage (V)

Endurance

Switching current (A)

Ambient Temperature vs Maximum Coil Voltage

Ambient temperature (${ }^{\circ} \mathrm{C}$)

Note: The maximum coil voltage refers to the maximum value in a varying range of operating
power voltage, not a continuous voltage.

Dimensions
Note: 1. All units are in millimeters unless otherwise indicated.
2. Numbers in parentheses are reference values.
3. Tolerance: ± 0.1
4. Orientation marks are indicated as follows: $\square \square$

Mounting Holes
(Bottom View)
Terminal Arrangement/ Internal Connec
(Bottom View)

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Miniature, Low-cost, Single-pole

PCB Relay

■ Miniature: $15.5 \times 10.5 \times 11.5 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$
■ Low power consumption: 200 mW .

- Bifurcated crossbar contacts.
- Gold-clad contacts.

■ Fully sealed type available.

- Ideal for telecommunications equipment and security systems.

미중

Ordering Information

Contact		General-purpose	High-sensitivity
		Fully sealed	Fully sealed
SPDT	Single crossbar	G2E-184P-M-US	G2E-184P-H-M-US
	Bifurcated crossbar	G2E-134P-M-US	G2E-134P-H-M-US

Note: When ordering, add the rated coil voltage to the model number.
Example: G2E-184P-M-US 12 VDC
L Rated coil voltage
Model Number Legend

1. Contact Form

1: SPDT
2. Contact Type

3: Bifurcated crossbar
8: Single crossbar
3. Enclosure Ratings

4: Fully sealed
4. Terminals
P. Straight PCB
5. Power Consumption
None:
General-purpose $(450 \mathrm{~mW})$ H: High-sensitivity (200 mW)
6. Classification

M: General-purpose
7. Approved Standard
8. US: UL, CSA certified
8. Rated Coil Voltage

Specifications

■ Coil Rating

General-purpose Relays

Rated voltage	1.5 VDC	3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current	300 mA	150 mA	89.3 mA	75 mA	50 mA	37.5 mA	18.8 mA
Coil resistance	5Ω	20Ω	56Ω	80Ω	180Ω	320Ω	$1,280 \Omega$
Coil inductance (H) (ref. value)	Armature OFF	0.005	0.017	0.044	0.067	0.137	0.229
Armature ON	0.009	0.034	0.091	0.136	0.297	0.496	2.1
Must operate voltage	70% max. of rated voltage						
Must release voltage	10% min. of rated voltage						
Max. voltage	120% of rated voltage at $23^{\circ} \mathrm{C}, 110 \%$ at $60^{\circ} \mathrm{C}$						
Power consumption	Approx. 450 mW						

High-sensitivity Relays

Rated voltage	1.5 VDC	3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current	125 mA	66.7 mA	41.7 mA	33.3 mA	22.5 mA	17.1 mA	8.6 mA
Coil resistance	12Ω	45Ω	120Ω	180Ω	400Ω	700Ω	2.800Ω
Coil (Hductance	Armature OFF	0.005	0.022	0.055	0.083	0.165	0.228
(H) (ref. value)	Armature ON	0.009	0.035	0.092	0.129	0.303	0.504
Must operate voltage	80% max. of rated voltage	2.287					
Must release voltage	10% min. of rated voltage						
Max. voltage	140% of rated voltage at $23^{\circ} \mathrm{C}, 130 \%$ at $65^{\circ} \mathrm{C}$						
Power consumption	Approx. 200 mW						

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

- Contact Ratings

Item	Single crossbar	Bifurcated crossbar
Load	Resistive load (cos $=1)$	Resistive load (cos $=1)$
Rated Load	0.5 A at $110 \mathrm{VAC} ;$ 1 A at 24 VDC	0.5 A at $110 \mathrm{VAC} ;$ 1 A at 24 VDC
Contact Material	AgPd (Au-clad)	
Rated Carry Current	2 A	
Max. switching voltage	$125 \mathrm{VAC}, 60 \mathrm{VDC}$	
Max. switching current	1 A	$120 \mathrm{VA}, 30 \mathrm{~W}$
Max. switching power	$120 \mathrm{VA}, 30 \mathrm{~W}$	0.1 mA at 0.1 VDC
Failure rate (reference value)	1 mA at 5 VDC	

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation.

$■$ Characteristics

Contact resistance	$50 \mathrm{~m} \Omega$ max.
Operate time	General-purpose type: 5 ms max. (mean value: approx. 2.5 ms) High-sensitivity type: 7 ms max. (mean value: approx. 3.5 ms)
Release time	$3 \mathrm{~ms} \mathrm{max}$. (mean value: approx. 0.8 ms)
Max. switching frequency	Mechanical: 18,000 operations/hr Electrical: 1,800 operations/hr at rated load
Insulation resistance	$100 \mathrm{M} \Omega$ min. (at 500 VDC)
Dielectric withstand voltage	500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 20G)
Endurance	Mechanical: 10,000,000 operations min. (at 18,000 operations/hr) Electrical: DC: 500,000 operations min. (1 A at 24 VDC resistive load) AC: 200,000 operations min. (0.5 A at 110 VAC resistive load) (at 1,800 operations $/ \mathrm{hr}$)
Ambient temperature	Operating: $-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing) (high-sensitivity type: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$)
Ambient humidity	Operating: 5\% to 85%
Weight	Approx. 3.7 g

■ Approved Standards

UL114, UL478, UL1950 (File No. E41515)/CSA C22.2 No.0,
No. 14 (File No. LR34815-97)

Model	Contact form	Coil ratings	Contact ratings
G2E-184P-M-US	SPDT	1.5 to 24 VDC	0.5 A 125 VAC (general use)
G2E-184P-H-M-US			$1 \mathrm{~A}, 28 \mathrm{VDC}$ (resistive)
G2E-134P-M-US			
G2E-134P-H-M-US			

Engineering Data
$\underset{\text { G2E-184P-M-US }}{\text { Maximum }}$ Switching Power

Endurance

Switching current (A)

Switching voltage (V)

G2E-184P-M-US

Dimensions
Note: 1. All units are in millimeters unless otherwise indicated.
2. Orientation marks are indicated as follows:

Terminal Arrangement/
Internal Connections Internal Connection
(Bottom View)

[^0]
PCB Signal Relay - G6E

Sub-miniature, Sensitive SPDT

Signal Switching Relay

- High sensitivity: 98 mW pickup coil power.
- Impulse withstand voltage meets FCC Part 68 requirements.
- Fully sealed construction.
- Unique moving loop armature reduces relay size, magnetic interference, and contact bounce time.
■ Single- and double-winding latching types

PCB Signal Relay - G6E

omROn
Specifications

■ Coil Ratings

Single-side Stable, Bifurcated Crossbar Contact Type

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		66.7 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	8.3 mA	8.3 mA
Coil resistance		45Ω	125Ω	180Ω	405Ω	720Ω	2,880 Ω	5,760 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.08	0.18	0.31	0.62	1.20	4.70	5.35
	Armature ON	0.06	0.17	0.24	0.50	0.99	3.90	5.12
Must operate voltage		70\% max. of rated voltage						
Must release voltage		10\% min. of rated voltage						
Max. voltage		190% of rated voltage at $23^{\circ} \mathrm{C}$						170% of rated voltage at $23^{\circ} \mathrm{C}$
Power consumption		Approx. 200 mW						Approx 400 mW

Single-winding Latching, Bifurcated Crossbar Contact Type

Rated voltage	3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current	66.7 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	8.3 mA
Coil resistance	45Ω	125Ω	180Ω	405Ω	720Ω	$2,880 \Omega$
Coil inductance	Armature OFF	0.05	0.13	0.19	0.45	0.84
(H) (ref. value)	Armature ON	0.04	0.12	0.17	0.40	0.79
Must set voltage	70% max. of rated voltage	3.10				
Must reset voltage	70% max. of rated voltage					
Max. voltage	190% of rated voltage at $23^{\circ} \mathrm{C}$					
Power consumption	Approx. 200 mW					

Rated voltage			3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Set Coil	Rated current		66.7 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	8.3 mA
	Coil resistance		45Ω	125Ω	180Ω	405Ω	720Ω	2,880 Ω
	Coil inductance (H) (ref. value)	Armature OFF	0.03	0.09	0.12	0.25	0.44	1.66
		Armature ON	0.03	0.08	0.11	0.22	0.41	1.62
Reset Coil	Rated current		66.7 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	8.3 mA
	Coil resistance		45Ω	125Ω	180Ω	405Ω	720Ω	2,880 Ω
	Coil inductance	Armature OFF	0.03	0.09	0.12	0.25	0.44	1.66
	(H) (ref. value)	Armature ON	0.03	0.08	0.11	0.22	0.41	1.62
Must set voltage			70% max. of rated voltage					
Must reset voltage			70\% max. of rated voltage					
Max. voltage			190% of rated voltage (at $23^{\circ} \mathrm{C}$)					
Power consumption			Set coil: Approx. 200 mW Reset coil: Approx. 200 mW					

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$

- Contact Ratings

Load	Resistive load (cos $\sigma=1$)	Inductive load (cos $\sigma=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	
Rated Load	0.4 A at $125 \mathrm{VAC} ; 2 \mathrm{~A}$ at 30 VDC	0.2 A at $125 \mathrm{VAC} ; 1 \mathrm{~A}$ at 30 VDC	
Contact Material	Ag (Au-clad)		
Rated Carry Current	3 A	3 A	
Max. switching voltage	$250 \mathrm{VAC}, 220 \mathrm{VDC}$	$25 \mathrm{VA}, 30 \mathrm{~W}$	
Max. switching current	3 A		
Max. switching power	$50 \mathrm{VA}, 60 \mathrm{~W}$		
Failure rate (reference value)	$10 \mu \mathrm{~A}$ at 10 m VDC		

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

■ Characteristics

Contact resistance	$50 \mathrm{~m} \Omega$ max.
Operate (set*) time	$5 \mathrm{~ms} \mathrm{max}$. (mean value: approx. 2.9 ms ; 48 VDC type: approx. 2.4 ms)
Release (reset*) time	5 ms max. (mean value: approx. 1.3 ms)
Bounce time	Operate: 3 ms max. (mean value: 0.37 ms) Release: 3 ms max. (mean value: 1.12 ms)
Max. operating frequency	Mechanical: 36,000 operations/hr Electrical: 1,800 operations/hr (under rated load)
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC)
Dielectric withstand voltage	1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (conforms to FCC Part 68)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 2.5 \mathrm{~mm}$ single amplitude (5 mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $300 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 100,000,000 operations min. (at 36,000 operations/hr) Electrical: 100,000 operations min. (0.4 A at 125 VAC resistive load; 0.2 A at 125 VAC inductive load) 500,000 operations min. (2 A at 30 VDC resistive load; 1 A at 30 VDC inductive load) 200,000 operations min. (3 A at 30 VDC resistive load)
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	5\% to 85\%
Weight	Approx. 2.7 g

*Minimum set and reset signals width is 7 ms min.

- Approved Standards

UL508 (File No. E41515)/CSA C22.2, No. 14 (File No. LR31928)

Contact form	Coil ratings	Contact ratings
SPDT	3 to 48 VDC	$0.2 \mathrm{~A}, 250 \mathrm{VAC}$ (general use)
		$0.6 \mathrm{~A}, 125 \mathrm{VAC}$ (general use)
		$2 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive)
		$0.6 \mathrm{~A}, 125 \mathrm{VDC}$ (resistive, Ag contact only)

Engineering Data

Maximum Switching Power

Switching voltage (V)

Endurance

Switching current (A) Note: The maximum coil voltage refers to the maxi mum value in a varying range of operating
power voltage, not a continuous voltage.

Dimensions
Note: 1. All units are in millimeters unless otherwise indicated 2. Orientation marks are indicated as follows: \square

G6E-134P-US
G6E-194P-US

Terminal Arrangement/ Internal Connections (Bottom View)

Ambient Temperature vs
Maximum Coil Voltage

Ambient temperature $\left({ }^{\circ}\right)$

G6EU-134P-US G6EU-194P-US

G6EU-134C-US
G6EU-134C-US
G6EU-194C-US

G6EK-134P-US G6EK-194P-US

G6EK-134C-US
G6EK-194C-US

Surface-Mounting Signal Relay - G6L

Extremely Thin SPST-NO Flat Relay, One of the Thinnest Relays in the World

- Dimensions of $7.0(\mathrm{~W}) \times 10.6(\mathrm{~L}) \times 4.2(\mathrm{H})(\mathrm{SMD})$ or
$3.8 \mathrm{~mm}(\mathrm{H})(\mathrm{TH})$ represent a reduction of approximately 20\% in mounting area and approximately 67% in volum compared with the OMRON G5V-1, for higher-density mounting.
- Ensures a dielectric strength between coil and contacts (1,000), and conforms to FCC Part 68 (i.e., withstanding an impulse withstand voltage of 1.5 kW for $10 \times 160 \mu \mathrm{~s}$).
- High dielectric strength between contacts of same polarity (750 VAC).
- Surface-Mounting relays are also available.

■ Conforms to to UL60950 (File No. E41515 / CSA C222
No. 60950 (File No. LR31928).

- Use of lead completely eliminated.

Ordering Information

Classification				Single-side stable
SPST-NO	Fully sealed	Through-hole terminal	G6L-1P	
	Surface-mounting terminal	G6L-1F		

Note: 1. When ordering, add the rated coil voltage to the model number Example: G6L-1P 12 VDC
2. When ordering tape packing, add "-TR" to the model number. Example: G6L-1F-TR 12 VDC

Be sure since "-TR" is not part of the relay model number, it is not marked on the relay case.
Model Number Legend

1. Relay Functio

None: Single-side stable relay
2. Number of contact poles/ Contact form

1. SPST-NO
2. Terminal shape

P: PCB terminal
4. Surface-mounting terminals, short
4. Packing state

None: Stick packing
TR: Tape packing
Application Examples
Peripherals of MODEM/PC, telephones, office automation machines, audio-visual products, communications equipment, measurement devices, amusement equipment, or security equipment.

Specifications

- Contact Ratings

Item/Load	Resistive load
Contact mechanism	Single crossbar
Rated load	0.3 A at 125 VAC, 1 A at 24 VDC
Rated carry current	1 A
Max. switching voltage	$125 \mathrm{VAC}, 60 \mathrm{VDC}$
Max. switching current	1 A

- Coil Ratings

Rated voltage	3 VDC	4.5 VDC	5 VDC	12 VDC	24 VDC
Rated current	60.0 mA	40.0 mA	36.0 mA	15.0 mA	9.6 mA
Coil resistance	50.0Ω	112.5Ω	139.0Ω	800.0Ω	$2,504.0 \Omega$
Must operate voltage	75% max. of rated voltage				
Must release voltage	10% min. of rated voltage				
Max. voltage	150% of rated voltage	130% of rated Voltage			
Power consumption	Approx. 180 mW	Approx. 230 mW			

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil.

Surface-Mounting Signal Relay - G6L
OmROn
■ Characteristics

Classification Item/Model		Single-side Stable Relays
		G6L-1P, G6L-1F
Contact resistance (See note 1.)		$100 \mathrm{~m} \Omega$ max.
Operating time (See note 2.)		$5 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.1 ms)
Release time (See note 2.)		$5 \mathrm{~ms} \mathrm{max}$. (approx. 0.4 ms)
Insulation resistance (See note 3.)		$1,000 \mathrm{M} \Omega$ min. (at 500 VDC$)$
Dielectric strength	Coils \& contacts	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min
	Contacts of same polarity	$750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min
Impulse withstand voltage	Coil \& contacts	1,500 VAC, $10 \times 160 \mu \mathrm{~s}$
Vibration resistance	Destruction	10 to $55 \mathrm{~Hz}, 1.65-\mathrm{mm}$ single amplitude (3.3 mm double amplitude)
	Malfunction	10 to $55 \mathrm{~Hz}, 1.65-\mathrm{mm}$ single amplitude (3.3 mm double amplitude)
Shock resistance	Destruction	1,000 m/s ${ }^{2}$
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical	$5,000,000$ operations min. (at 36,000 operations/hour)
	Electrical	100,000 operations min. (with a rated load at 1,800 operations/hour)
Failure rate (P level) (See note 4.)		1 mA at 5 VDC
Ambient temperature		Operating: - $40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity		Operating: 5\% to 85%
Weight		Approx. 0.6 g

Note: 1. The contact resistance was measured with 10 mA at 1 VDC with a fall-of-potential method.
2. Values in parentheses are actual values.
3. The insulation resistance was measured with a 500 -VDC Megger Tester applied to the same parts as those for checking the dielectric strength
4. This value was measured at a switching frequency of 120 operations $/ \mathrm{min}$. This value may vary, depending on switching frequency, operating conditions, expected reliability level of the relay, etc. It is always recommended to double-check relay 5. The above values are initial values.

Engineering Data

Surface-Mounting Signal Relay - G6L
OmROn

Mutual Magnetic Interference

Mutual Magnetic Interference

External Magnetic Interference

High-frequency Characteristics (Isolation)

High-frequency Characteristics (Insertion Loss)

High-frequency Characteristics (Return Loss, v.SWR)

Note: The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
Dimensions
Note: All units are in millimeters unless otherwise indicated

G6L-1P

G6L-1F

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

PCB Moun
(Top View)
PCB Mounting Holes (Bottom View)

Terminal Arrangement/
Internal Connections (Bottom View)

Tolerance: ± 0.1
Terminal Arrangement/ Internal Connections (Top View)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Stick Packing and Tape Packing

1. STICK PACKING

Relays in stick packing are arranged so that the orientation mark of each Relay is on the left side.
Always confirm that the Relays are in the correct orientation when mounting the Relays to the PCBs.

Stopper (gray) Orientation of Relays

Stick length: 552 mm (stopper not included) No. of Relays per stick: 50

2. TAPE PACKING

(SURFACE-MOUNTING TERMINAL RELAYS
When ordering Relays in tape packing, add the suffix "-TR" to the model number, otherwise the Relays in stick packing will be provided.
Tape type: TB2412R (Refer to EIAJ (Electronic Industries
Reel type: Association of Japan)
Reel type: R24D (Refer to EIAJ (Electronic Industries Association of Japan))
Relays per reel: 1,000
Direction of Relay Insertion

Reel Dimensions

Carrier Tape Dimensions
G6L-1F

A-A Cross Section

Recommended Soldering Method

TEMPERATURE PROFILE ACCORDING TO IRS

- When performing reflow-soldering, check the profile on an actual device after setting the temperature condition so that the case do not exceed the limits specified in the following table.

Item/ Measuring position	Preheating $(\mathrm{T} 1$ to $\mathrm{T} 2, \mathrm{t} 1)$	Soldering $\left(\mathrm{T} 3, \mathrm{t}_{1}\right)$	NPeak value $\left(\mathrm{T}_{2}\right)$
Terminal	$150^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$, 120 s max.	$180^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$, 20 to 30 s	$245^{\circ} \mathrm{C} \mathrm{max}$.
Upper surface of case	-	-	$250^{\circ} \mathrm{C}$ max.

- Approved Standards

Lapproval: UL60950 (File No. E41515
CSA approval: C22. 2 No. 60950 (File No. LR31928)

Contact form	Coil ratings	Contact ratings	Number of test operations
SPST-NO	G6L-1P and G6L-1F: 3 to 24 VDC	1 A at 30 VDC	6,000
		0.5 A at 60 VDC	
		0.3 A at 125 VAC	

- The thickness of cream solder to be applied should be within a range between 150 and $200 \mu \mathrm{~m}$ on OMRON's recommended palter

Visually check that the Relay is properly soldered.

Precautions

correct use

Handling
Leave the Relays packed until just prior to mounting them. Soldering
Solder: JIS Z3282, H63A
Soldering temperature: Approx. $250^{\circ} \mathrm{C}$ (At $260^{\circ} \mathrm{C}$ if the DWS method is used.)
Soldering time: Approx. 5 s max. (approx. 2 s for the first time and approx. 3 s for the second time if the DWS method is used.) Be sure to adjust the level of the molten solder so that the solder will not overflow onto the PCB.
Claw Securing Force During Automatic Insertion
During automatic insertion of Relays, make sure to set the force of the claws to the Relay characteristics will be maintained.

Direction A: 5.0 N max
Direction B: 5.0 N max Direction C: 5.0 N max

Secure the claws to the area indicated by shading. Do not attach them to the center area or to only part of the Relay.
Environmental Conditions During Operation, Storage, and Transportation
ans from direct sunlight and keep the Relays under normal temperature, humidity, and pressure.

MAXIMUM VOLTAG

The maximum voltage of the coil can be obtained from the coil temperature increase and the heat-resisting temperature of coil insulating sheath material. (Exceeding the heat-resisting temperature may result in burning or short-circuiting.) The maximum voltage include the following:

- Must not cause
insulating material.
- Must not cause damage to other control devices.
- Must not cause any harmful effect on people.
- Must not cause fire

Therefore, be sure not to exceed the maximum voltage specified in the catalog.
As a rule, the rated voltage must be applied to the coil. A voltage exceeding the rated value, however, can be applied to the coil provided that the voltage, is less than the maximum voltage. It
must be noted that continuous voltage application to the coil will must be noted that continuous voltage application to the coil will
cause a coil temperature increase thus affecting characteristics such as electrical life and resulting in the deterioration of coil insulation
Coating
Relays mounted on PCBs may be coated or washed. Do not apply silicone coating or detergent containing silicone, otherwise the silicone coating or detergent may remain on the surface of the Relays.

[^1]
Ultracompact, Ultrasensitive DPDT

Relay

- Compact size and low 5 mm profile.
- Low power consumption (140 mW for singleside stable, 100 to 300 mW for latching type) and high sensitivity.
■ Low thermoelectromotive force.
- Low magnetic interference enables highdensity mounting.

미 (7)
■ Single- and double-winding latching types also available.

Ordering Information

Classification			Single-side stable	Single-winding latching	Double-winding latching
DPDT	Fully	PCB terminal	G6H-2	G6HU-2	G6HK-2
	Sealed	Surface mount terminal	G6H-2F	-	-

Note: When ordering, add the rated coil voltage to the model number. Example: G6HK-2 12 VDC

Rated coil voltage
Model Number Legend
G6H $\square-\square \square-\square \quad \square$ VDC
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

1. Relay Function

None: Single-side stable
U : Single-winding latching
2. Contact Form

2: DPDT
None: PCB termin
F: Surface mount terminal
4. Classification

U: Ultrasonically cleanable
5. Rated Coil Voltage

3, 5, 6, 9, 12, 24 VDC

Specifications

$■$ Coil Ratings

Single-side Stable Type (G6H-2, G6H-2F)

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current		46.7 mA	28.1 mA	23.3 mA	15.5 mA	11.7 mA	8.3 mA
Coil resistance		64.3Ω	178Ω	257Ω	579 ת	1,028 Ω	2,880 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.025	0.065	0.11	0.24	0.43	1.2
	Armature ON	0.022	0.058	0.09	0.20	0.37	1.0
Must operate voltage		75% max. of rated voltage					
Must release voltage		10\% min. of rated voltage					
Max. voltage		200% of rated voltage at $23^{\circ} \mathrm{C}$					170% of rated voltage at $23^{\circ} \mathrm{C}$
Power consumption		Approx. 140 mW					Approx. 200 mW

Note: 48 VDC (single-side stable) model is also available. Consult OMRON for details.

PCB Signal Relay - G6H
OmROn
Single-winding Latching Type (G6HU-2)

Rated voltage	3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current	33.3 mA	20 mA	16.7 mA	11.1 mA	8.3 mA	6.25 mA
Coil resistance	90Ω	250Ω	360Ω	810Ω	$1,440 \Omega$	$3,840 \Omega$
Coil inductance	Armature Ω OFF	0.034	0.11	0.14	0.33	0.60
(H) (ref. value)	Armature ON	0.029	0.09	0.12	0.28	0.50
Must operate voltage	75% max. of rated voltage	1.3				
Must release voltage	75% min. of rated voltage					
Max. voltage	180% of rated voltage at $23^{\circ} \mathrm{C}$					
Power consumption	Approx. 100 mW					

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current		66.7 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	12.5 mA
Coil resistance		45Ω	125Ω	180Ω	405Ω	720Ω	1,920 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.014	0.042	0.065	0.16	0.3	0.63
	Armature ON	0.0075	0.023	0.035	0.086	0.16	0.33
Must operate voltage		75% max. of rated voltage					
Must release voltage		75\% min. of rated voltage					
Max. voltage		160% of rated voltage at $23^{\circ} \mathrm{C}$					130% of rated voltage at $23^{\circ} \mathrm{C}$
Power consumption		Approx. 200 mW					Approx. 300 mW

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

- Contact Ratings

Load	Resistive load $(\cos \varnothing=1)$
Rated load	0.5 A at $125 \mathrm{VAC} ; 1 \mathrm{~A}$ at 30 VDC
Contact material	$\mathrm{Ag}(\mathrm{Au}$-clad $)$
Rated carry current	1 A
Max. switching voltage	$125 \mathrm{VAC}, 110 \mathrm{VDC}$
Max. switching current	1 A
Max. switching power	$62.5 \mathrm{VA}, 33 \mathrm{~W}$
Failure rate (reference value)	$10 \mu \mathrm{~A}$ at 10 mVDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

$■$ Characteristics

Contact resistance	$50 \mathrm{~m} \Omega$ max. (G6H-2-U: $100 \mathrm{~m} \Omega$ max.; G6H-2F: $60 \mathrm{~m} \Omega \mathrm{max}$.)
Operate (set) time	Single-side stable types: 3 ms max. (mean value: approx. 2 ms) Latching types: 3 ms max. (mean value: approx. 1.5 ms)
Release (reset) time	Single-side stable types: 2 ms max. (mean value: approx. 1 ms) Latching types: 3 ms max. (mean value: approx. 1.5 ms)
Bounce time	Operate: Approx. 0.5 ms Release: Approx. 0.5 ms Set/reset: Approx. 0.5 ms
Min. set/reset signal width	Latching type: $5 \mathrm{~ms} \mathrm{min}. \mathrm{(at} 23^{\circ} \mathrm{C}$)
Max. operating frequency	Mechanical: 36,000 operations $/ \mathrm{hr}$ Electrical: 1,800 operations/ $/ \mathrm{hr}$ (under rated load)
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC)

- Approved Standards

UL114, UL478 (File No. E41515)/CSA C22.2 No.0, No. 14 (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings	
G6H-2	DPDT	1.5 to 48 VDC	$2 \mathrm{~A}, 30 \mathrm{VDC}$	
G6HU-2			$0.3 \mathrm{~A}, 110 \mathrm{VDC}$	
G6HK-2			$0.5 \mathrm{~A}, 125 \mathrm{VAC}$	
G6H $(\mathrm{U} / \mathrm{K})-2-\mathrm{U}$				
G6H(U/K)-2-100				

Engineering Data

Switching voltage (V)

Endurance

Switching current (A)

Ambient Temperature vs. Maximum Coil Voltage
(G6H-2)
Single-winding Latching
(G6HU-2)
(G6HU-2)

Ambient temperature (${ }^{\circ} \mathrm{C}$)

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

Double-winding Latching (G6HK-2)

Ambient temperature (${ }^{\circ} \mathrm{C}$)

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage. Malfunctioning Shock Resistance
(G6H-2)
5 VDC
Number of Units: 10

Condition: The Units were shocked at the rate of $500 \mathrm{~m} / \mathrm{s}^{2}$ three times each in the $\pm \mathrm{X}, \pm \mathrm{Y}$, and $\pm \mathrm{Z}$ directions
with and without voltage imposed on the Units until with and without voltage
the Units malfunctioned.

High-frequency Characteristics Frequency vs. Isolation

Frequency vs. Insertion Loss
Frequency vs. Return Loss, v.SWR

Frequency (MHz)

Frequency (MHz)

Frequency (MHz)

Note: The above characteristics were obtained from the Units inserted into test sockets. The characteristics of GGH-2 Units in actual operation may be different from the above characteristics. Check the characteristics of $\mathrm{G} 6 \mathrm{H}-2$
Units under the actual conditions before use.

Distribution of Operate and
Release Time

Time (ms)

Distribution of Bounce Time

Time (ms)

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: indica

Single-side Stable Type
G6H-2(-U)

Average value

Terminal Arrangement (Bottom View)

Single-winding Latching Type
G6HU-2(-U)

Double-winding Latching Type

Ultra-compact and Slim DPDT Relay with the World's Smallest Mounting Area*

- Dimensions of $4.8 \times 10.3 \times 9 \mathrm{~mm}(\mathrm{WxLxH})$ represent a reduction of approximately 55% in mounting area compared with the OMRON G6S, for higher-density mounting.
- Dielectric strength of 1,500 VAC and an impulse withstand voltage of $2,500 \mathrm{~V}$ for 2 x $10 \mu \mathrm{~s}$ (conforms to North American Telcordia specifications (formerly Bellcore)).
- Conforms to FCC Part 68 (i.e., impulse withstand voltage of $1,500 \mathrm{~V}$ for $10 \times 160 \mu \mathrm{~s}$ between coil and contacts and between contacts of the same polarity)
■ Single-winding latching models to save energy.
■ Conforms to UL60950 (File No. E41515)/CSA C22.2 No. 60950 (File No. LR24825).

Ordering Information

Classification				Single-side stable	Single-winding latching
DPDT	$\begin{aligned} & \text { Plastic } \\ & \text { sealed } \end{aligned}$	Through-hole terminal		G6J-2P	G6JU-2P
		Surface mount terminal	Short	G6J-2FS	G6JU-2FS
			Long	G6J-2FL	G6JU-2FL

Note: 1. When ordering, add the rated coil voltage to the model number
Example: G6J-2P 12 VDC
Rated coil voltage
2. When ordering tape packing, add "-TR" to the model number.
Example: G6J-2P-TR 12 VDC
Tape packing

When orderina tape packina. add "-TR" to the model number.
Be sure since "-TR" is not part of the relay model number, it is not marked on the relay case
Model Number Legend
G6H $\frac{\square}{1}-\frac{\square}{2} \frac{\square}{3}$

1. Relay Function

None: Single-side stable
$\mathrm{U}: \quad$ Single-winding latching
3. Terminal shape P: PCB terminals
FS: Surface-mounting terminals, short
FL: Surface-mounting terminals, long
2. Contact form

2: DPD

Application Examples

Telephones, communications equipment, measurement devices, office automation machines, and audio-visual products.

Surface-Mounting Signal Relay - G6J
Standard Specifications \qquad
Contact mechanism: Crossbar twin Ag (Au-alloy contact)
Enclosure rating: Plastic-sealed

■ Coil Rating

Single-side Stable Relays (G6J-2P, G6J-2FS, G6J-2FL)

Rated voltage	3 VDC	4.5 VDC	5 VDC	12 VDC	24 VDC
Rated current	48.0 mA	32.1 mA	29.2 mA	12.2 mA	9.2 mA
Coil resistance	62.5Ω	140.4Ω	171.1Ω	979.8Ω	$2,620 \Omega$
Must operate voltage	75% max. of rated voltage				
Must release voltage	10% min. of rated voltage				
Max. voltage	150% of rated voltage				
Power consumption	Approx. 140 mW				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

Single-winding Latching Relays (G6JU-2P, G6JU-2FS, G6JU-2FL)

Rated voltage	3 VDC	4.5 VDC	5 VDC	12 VDC
Rated current	33.9 mA	21.7 mA	20.4 mA	9.2 mA
Coil resistance	88.5 ת	207.8 ת	245.3Ω	1,309 Ω
Must operate voltage	75% max. of rated voltage			
Must release voltage	75% max. of rated voltage			
Max. voltage	150% of rated voltage			
Power consumption	Approx. 100 mW			

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

■ Contact Ratings

Load	Resistive load
Rated load	0.3 A at 125 VAC; 1 A at 30 VDC
Rated carry current	1 A
Max. switching voltage	125 VAC, 110 VDC
Max. switching current	1 A

■ Characteristics

Item		Single-side Stable Relays	Single-winding Latching Relays
		G6J-2P, G6J-2FS, G6J-2FL	G6JU-2P, G6JU-2FS, G6JU-2FL
Contact resistance (See note 1.)		$100 \mathrm{~m} \Omega$ max.	
Operating (set) time (See note 2.)		$3 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.3 ms)	$3 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.3 ms)
Release (reset) time (See note 2.)		$3 \mathrm{~ms} \mathrm{max}$. (approx. 0.8 ms)	$3 \mathrm{~ms} \mathrm{max}$. (approx. 1.3 ms)
Minimum set/reset signal width		-	$10 \mathrm{~ms} \mathrm{min}$.
Insulation resistance (See note 3.)		$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC$)$	
Dielectric strength	Coils \& contacts	$1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min	
	Contacts of different polarity	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min	
	Contacts of same polarity	$750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min	
Impulse with stand voltage	Coils \& contacts	$2,500 \mathrm{VAC}, 2 \times 10 \mu \mathrm{~s}$	
	Contacts of different polarity	$1,500 \mathrm{VAC}, 10 \times 160 \mu \mathrm{~s}$	
	Contacts of same polarity		
Vibration resistance		Destruction: 10 to 55 Hz 2.5 mm single amplitude (5 mm double amplitude) Malfunction: 10 to 55 Hz 1.65 mm single amplitude (3.3 mm double amplitude)	
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $750 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 75 G)	
Life expectancy		Mechanical: 50,000,000 operations min. (at 36,000 operations/hour) Electrical: 100,000 operations min. (with a rated load at 1,800 operations/hour)	
Failure rate (P level) (See note 4.)		$10 \mu \mathrm{~A}$ at 10 mVDC	
Ambient temperature		-40 to $85^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		5\% to 85\%	
Weight		Approx. 0.8 g	

Note: 1. The contact resistance was measured with 10 mA at 1 VDC with a fall-of-potential method.
2. Values in parentheses are actual values,
3. The insulation resistance was measured with a $500-$ VDC Megger Tester applied to the same parts as those for checking the dielectric strength.
4. This value was measured at a switching frequency of 120 operations $/ \mathrm{min}$.
569. The above values are initial values.

Mutual Magnetic Interference

Mutual Magnetic Interference

External Magnetic Interference

High-frequency Characteristics (Isolation)

High-frequency Characteristics (Isolation)

Frequency (MHz)

Frequency (MHz)

High-frequency Characteristics (Return Loss, V.SWR)

Must Operate and Must Release Must Operate and Must Release Time Distribution (See note.) Bounce Time Distribution (See note.)
ibration Resistance

Note: The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.

Dimensions
Note: All units are in millimeters unless otherwise indicated.

G6J-2P

G6JU-2P

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Mounting Dimensions (Bottom View) Tolerance $\pm 0.1 \mathrm{~mm}$

Terminal Arrangment/ Internal Connections (Bottom View) $\xrightarrow{\text { Orientation }}$

G6U-2P
ientation mark

G6J-2FS
G6JU-2FS

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
N
Mounting Dimensions (Top View)

Terminal Arrangement Internal Connections (Top View) G6J-2FS
Orientation mark

G6J-2FL
G6JU-2FL

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Terminal Arrangement Internal Connections
(Top View) (Top View)

G6J-2FL

Surface-Mounting Signal Relay - G6J

omROn
Stick Packing and Tape Packing

1. Stick Packing

Relays in stick packing are arranged so that the orientation mark Always confirm that the Relays are in the correct orientation when mounting the Relays to the PCBs.
Stopper (grey) Orientation of Relays
Stopper (green)

Carrier Tape Dimensions G6J-2FS, G6JU-2FS

Stick length: 540 mm (stopper not included)
No. of Relays per stick: 50
2. Tape Packing (Surface-mounting Terminal Relays)

When ordering Relays in tape packing, add the prefix "-TR" to the
model number, otherwise the Relays in stick packing will be provided.
Tape type TB2412R (EIAJ (Electronic Industrial
Association of Japan))
Reel type: R24D (EIAJ (Electronic Industrial Association
Relays per of Japan
Direction of Relay Insertion

G6J-2FL, G6JU-2FL

Reel Dimensions

Recommended Soldering Method

IRS Method (for Surface-Mounting Terminal Relays)

- The thickness of cream solder to be applied should be between 150 and 200 mm on OMRON's recommended PCB pattern.
- In order to perform correct soldering, it is recommended that the correct soldering conditions be maintained as shown below on the left-hand side.

Correct Soldering Incorrect Soldering

Visually check that the Relay is properly soldered.

Note: Temperatures indicate the surface temperatures of the PCB
■ Approved Standards
UL approval: UL60950 (File No. E41515)
CSA approval: C22.2 No. 60950 (File No. LR24825)

Contact form	Coil ratings	Contact ratings	Number of test operations
DPDT	G6J-2P, 2FS, 2FL: 3 to 24 VDC	1 A at 30 VDC	6,000
	G6JU-2P, 2FS, 2FL: 3 to 24 VDC	0.5 A at 6 VVDC	
	0.3 A at 125 VAC		

Precautions
correct use
Handling
Leave the Relays packed until just prior to mounting them. Soldering
Solder: JIS Z3282, H63
Soldering temperature: Approx. $250^{\circ} \mathrm{C}$ (At $260^{\circ} \mathrm{C}$ if the DWS method is used.)
Soldering time: Approx. 5 s max. (Approx. 2 s for the first time and approx. 3 s for the second time if the DWS method is used.) Be sure to adjust the level of the molten solder so that the solder Claw Securing Fo
During automatic insertion of Relays, make sure to set the securing force of the claws to the following values so that the Relay characteristics will be maintained.

Direction A: 4.90 N max Direction C: 9.80 N max
Secure the claws to the area indicated by shading Do not attach them to the center area or to only part of the Relay Environmental Conditions During Operation, Storage, and Transportation
Protect the Relays from direct sunlight and keep the Relays under Mounting Lerature, humidity, and pressure.
Mounting Latching Relays
devices, such as Relays or shock that is generated from other imposed on the Latching Relays does not exceed the rated value, otherwise the Latching Relays that have been set may be reset or vice versa. The Latching Relays are reset before shipping. If excessive vibration or shock is imposed, however, the Latching
Relays may be set accidentally. Be sure to apply a reset signal before use.

Maximum Allowable Voltage

The maximum voltage of the coil can be obtained from the coil temperature increase and the heat-resisting temperatur of coil insulating sheath material. (Exceeding the heat-resisting temperature may result in burning or short-circuiting.) The maximum voltage also involves important restrictions which include the following:

- Must not cause thermal changes or deterioration of the insulating material.
Must not cause damage to other control devices.
- Must not cause any harmful effect on people.
- Must not cause fire
not to exceed the maximum voltage specified the catalog.
As a rule, the rated voltage must be applied to the coil. A voltage exceedided the rated value, however, can be applied to the coil provided that the voltage is less than the maximum voltage. It must be noted that continuous voltage application to the coil will cause a coil temperature increase thus affecting characteristics such as electrical life and resulting in the deterioration of coil Coating
Coating
Relays mounted on PCBs may be coated or washed. Do not the silicone coating or detergent may remain on the surface of the Relays.

Surface-Mounting Signal Relay - G6K

Surface-Mounting Relay with the World's Smallest Mounting Area and
 a Height of Only 5.2 mm

- Sub-miniature model as small as $5.2(\mathrm{H}) \times 6.5$ (W) $\times 10$ (L) mm is ideal for high-density mounting.
- Low profile of 5.2 mm and weight of only 0.7 g combine to improve mounting efficiency
- Models with inside-L surface mounting terminals are available.
■ Consumes approximately 70% the power of a conventional OMRON model and operates at a current that is as low as 100 mW .
■ Surface mounting terminal models incorporate a unique terminal structure with high infrared irradiation efficiency which allows the terminal temperature to rise easily when mounting the IRS, thus ensuring excellent soldering.
Ensures a dielectric strength of 1,500 VAC and conforms to FCC Part 68 (i.e., withstanding an impulse withstand voltage of $1,500 \mathrm{~V}$ for $10 \times 160 \mu \mathrm{~s}$).

Ordering Information

Classification				Single-side	Single-winding	Single-side stable Bellcore:
DPDT	Fully sealed	Through-hole terminal		G6K-2P	G6KU-2P-Y	G6K-2P-Y
		Surface Mounting	Inside-L	G6K-2G	G6KU-2G-Y	G6K-2G-Y
			Outside-L	G6K-2F	G6KU-2F-Y	G6K-2F-Y

Note: 1. When ordering, add the rated coil voltage to the model number. Example: G6K-2F 12 VDC
2. When ordering tape packing, add -TR" to the model number Example: G6K-2F-TR 12 VDC
Be sure since -TR" is not part of the relay model number, it is not marked on the relay case

Model Number Legend

G6K $\square-\square-\square \square$ VDC

1. Relay function

None: Single-side stable model
$\mathrm{U}: \quad$ Single-winding latching model
2. Contact Form
3. Terminal shape

F: Outside-L surface-mounting terminal
P: PCB terminal

미징

■ New-Y models offer an impulse withstandvoltage of $2,500 \mathrm{~V}$ for $2 \times 10 \mu \mathrm{~s}$ (conforms to Bellcore specifications) by optimizing the distance between coil and contacts.

- Conforms to UL1950 (File No. E41515)/CSA C22.2 No. 950 (File No. LR24825)

The above specifications are ensured as of August 1999.

Surface-Mounting Signal Relay - G6K
omROn

Application Examples

Telephones, communications equipment, measurement devices, office automation machines, and audio-visual products.

Specifications

Contact mechanism: Bifurcated crossbar Ag (Au-alloy contact)
Enclosure ratings: Fully sealed

■ Coil Ratings

Single-side Stable Models - G6K-2F, G6K-2G, G6K-2P

Rated voltage	3 VDC	4.5 VDC	5 VDC	12 VDC
Rated current	33.0 mA	23.2 mA	21.1 mA	9.1 mA
Coil resistance	91Ω	194Ω	237Ω	$1,315 \Omega$
Must operate voltage	80% max. of rated voltage			
Must release voltage	10% min. of rated voltage			
Max. voltage	150% of rated voltage at $23^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			
Power consumption	Approx. 100 mW			
Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil instantaneously.

Single-side Stable Models (Bellcore Version) - G6K-2F-Y, G6K-2G-Y, G6K-2P-Y

Rated voltage	3 VDC	4.5 VDC	5 VDC	12 VDC	24 VDC
Rated current	33.0 mA	23.2 mA	21.1 mA	9.1 mA	4.6 mA
Coil resistance	91Ω	194Ω	237Ω	$1,315 \Omega$	$5,220 \Omega$
Must operate voltage	80% max. of rated voltage				
Must release voltage	10% min. of rated voltage				
Max. voltage	150% of rated voltage at $23^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				
Power consumption	Approx. 100 mW				
Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.					

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$
3. The maximum voltage is the highest voltage that can be imposed on the relay coil instantaneously.

Single-winding Latching Models (Bellcore Version) - G6KU-2F-Y, G6KU-2G-Y, G6KU-2P-Y

Rated voltage	3 VDC	4.5 VDC	5 VDC	12 VDC	24 VDC
Rated current	33.0 mA	23.2 mA	21.1 mA	9.1 mA	4.6 mA
Coil resistance	91Ω	194Ω	237Ω	$1,315 \Omega$	$5,220 \Omega$
Must Set voltage	75% max. of rated voltage				
Must reset voltage	75% max. of rated voltage				
Max. voltage	150% of rated voltage at $23^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				
Power consumption	Approx. 100 mW				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil instantaneously.

- Contact Ratings

Load	Resistive load
Rated load	0.3 A at $125 \mathrm{VAC} ; 1$ A at 30 VDC
Rated carry current	1 A
Max. switching voltage	$125 \mathrm{VAC}, 60 \mathrm{VDC}$
Max. switching current	1 A

- Characteristics

Item		Single-side stable models (double-pole)		Single-winding latching
		G6K-2F, G6K-2G, G6K-2P	G6K-2F-Y, G6K-2G-Y, G6K-2P-Y	G6KU-2F-Y, G6KU-2G-Y, G6KU-2P-Y
Contact resistance (see note 1)		100Ω max.		
Operating (set) time (see note 2)		$3 \mathrm{~ms} \mathrm{max}$. (approx. 1.4 ms)		$3 \mathrm{~ms} \mathrm{max}$. (approx. 1.2 ms)
Release (reset) time (see note 2)		$3 \mathrm{~ms} \mathrm{max}$. (approx. 1.3 ms)		$3 \mathrm{~ms} \mathrm{max}$. (approx. 1.2 ms)
Insulation resistance (see note 3)		1,000 $\mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)		
Dielectric strength	Coil \& contacts	$1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Contacts of different polarity	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Contacts of same polarity	$750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
Impulse withstand voltage	Coil \& contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s}), 1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$	
	Contacts of different polarity	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$		
	Contacts of same polarity	-		
Vibration resistance		Destruction: 10 to $55 \mathrm{~Hz}, 2.5-\mathrm{mm}$ single amplitude ($5-\mathrm{mm}$ double amplitude) and 55 to $500 \mathrm{~Hz}, 300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30G) Malfunction: 10 to $55 \mathrm{~Hz}, 1.65-\mathrm{mm}$ single amplitude (3.3-mm double amplitude) and 55 to $500 \mathrm{~Hz}, 200 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 20G)		
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $750 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 75G)		
Endurance		Mechanical: 50,000,000 operations min. (at 36,000 operations/hour) Electrical: 100,000 operations min. (with a rated load at 1,800 operations/hour)		
Failure rate (P level) (see note 4)		$10 \mu \mathrm{~A}$ at 10 mVDC		
Ambient temperature		Operating: - $40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity		Operating: 5\% to 85%		
Weight		Approx. 0.7 g		

Note: The above values are initial values.
Note: 1. The contact resistance was measured with 10 mA at 1 VDC with a fall-of-potential method
2. Values in parentheses are actual values
3. The insulation resistance was measured with a 500-VDC Megger Tester applied to the same parts as those used for checking
4. This value was measured at a switching frequency of 120 operations $/ \mathrm{min}$.

Engineering Data

Ambient Temperature vs Switching Current

Note:
The maxi Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

Ambient Temperature vs. Must
Operate or Must Release Voltage Operate or Must Release Voltage

Ambient temperature (${ }^{\circ} \mathrm{C}$)

Electrical Endurance with Must Operate and Must Re lease Voltage) (see note)
G6K-2G (F/P), G6K-2G (F/P)-

Ambient Temperature vs. Must Get or Must Reset Voltage

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

Shock Malfunction

Electrical Endurance (Contact Resistance) (see note) G6K-2G (F/P), G6K-2G (F/P)-Y

Contact Reliability Test (see note) G6K-2G (F/P), G6K-2G (F/P)-Y

Note: $\begin{aligned} & \text { The test was conducted at an } \\ & \text { ambient temperature of } 23^{\circ} \mathrm{C} \text {. }\end{aligned}$
External Magnetic Interference

High-frequency Characteristics

 (Isolation)

Frequency (MHz)

Mutual Magnetic Interference G6K-2G (F/P), G6K-2G (F/P)-Y -- Must operate voltage

Mutual Magnetic Interference G6K-2G (F/P), G6K-2G (F/P)-Y
--- Must operate voltage

High-frequency Characteristics (Insertion Loss)

Frequency (MHz)

High-frequency Characteristics

 (Return Loss)(F/P),G6K-2G (F/P)-Y

Frequency (MHz)

Dimensions
Note: 1. All units are in millimeters unless otherwise indicated.

■ DPOT

G6K-2F

G6K-2G

G6K-2P

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Mounting Dimensions (Top View)

Mounting Dimensions (Top View)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement Internal Connections
(Top View)
 Internal Connections (Top View)

Terminal Arrangement/ internal Connectio
(Bottom View)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

G6K-2F-Y

G6K-2G-Y
Note

Mounting Dimensions (Top View)
Tolerance: $\pm 0.1 \mathrm{~mm}$
Terminal Arrangement
Internal Connections Internal Connections
(Top View)

unting Dimensions (Top View) Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/ Internal Connections
(Top View)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$. Mounting Dimensions (Bottom View) Terminal Arrangement Mounting Dimensions (Bottom View) Terminal Arrangement/
Tolerance: $\pm 0.1 \mathrm{~mm}$
(20)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
G6K-2P-Y

G6KU-2G-Y
Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Mounting Dimensions (Top View)

Terminal Arrangement Internal Connections
(Top View)

Mounting Dimensions (Top View) $\begin{gathered}\text { Terminal Arrangement }\end{gathered}$ Tolerance: $\pm 0.1 \mathrm{~mm}$
 nternal Connections Top View)

Surface-Mounting Signal Relay - G6K

omROn

Stick Packing and Tape Packing

Stick Packing

Relays in stick packing are arranged so that the orientation mark of each Relay is on the left side. Fifty Relays are packed on one
stick. stick.
Be sure not to make mistakes in Relay orientation when mounting
the Relay to the FPCB.

Stick length: 520 mm (stopper not included)

No. of Relays per stick: 50
Tape Packing (Surface-Mounting Terminal Models)
When ordering Relays in tape packing, add the prefix "-TR" to the model number, otherwise the Relays in stick packing will be provided.
Tape Type: ETX7200
(EIAJ (Electronic Industrial Association of Japan))
Reel type: RPM-16D (EIAJ)
Relays per Reel: 900

2. Reel Dimensions

G6k-2G, G6K-2G-Y. G6KU-2G-Y

Recommended Soldering Method

Temperatures indicate the surface temperatures of the PCB
IRS Method (for surface-mounting terminal models)

- The thickness of cream solder to be applied should be within a range between 150 and $200 \mu \mathrm{~m}$ on OMRON's recommended PCB pattern.
- In order to perform correct soldering, it is recommended that the correct soldering conditions be maintained as shown below on the left side.

Visually check that the Relay is properly soldered.

- Approved Standards

UL approval: UL1950 (File No. E41515)
CSA approval: C22.2 No. 950 (File No. LR24825)

Model	Coil ratings	Contact ratings	Number of test operations
DPDT	G6K-2G(F/P): 3 to 12 VDC	1 A at 30 VDC	6,000
		G6K(U)-2G(F/P)-Y: 3 to 24 VDC	0.5 A at 60 VDC
	0.3 A at 125 VAC		

Precautions

correct use

Handling
Leave the Relay unpacked until mounting it
Soldering
Solder: JIS Z3282, H63A
Soldering temperature: Approx. $250^{\circ} \mathrm{C}\left(260^{\circ} \mathrm{C}\right.$ if the DWS method is used)
Soldering time: Approx. 5 s max. (approx. 2 s for the first time and approx. 3 s for the second time if the DWS method is used) Be sure to make a molten solder level adjustment so that the solder will not overflow on the PCB.
Claw Securing Force During Automatic Mounting
During automatic insertion of Relays, make sure to set the securing force of each claw to the following so that the Relays characteristics are maintained.

Environmental Conditions During Operation, Storage, and Transportation
Protect the Relay from direct sunlight and keep the Relay under normal temperature, humidity, and pressure
If the Relay is stored for a long time in an adverse environment
with high temperature, high humidity, organic gases or sulphide gases, sulphide or oxide films will form on the contact surfaces, These films may result in unstable contact, contact problems, or functional problems. Therefore, operate, store, or transport the product under specified environmental conditions.
Latching Relay Mounting
Make sure that the vibration or shock that is generated from other devices, such as relays in operation, on the same panel and
imposed on the Latching Relay does not exceed the rated value, otherwise the Latching Relay that has been set may be reset or vice versa. The Latching Relay is reset before shipping. If excessive vibration or shock is imposed, however, the Latching Relay may be set accidentally. Be sure to apply a reset signal
before use.

Maximum Allowable Voltage
The maximum allowable voltage of the coil can be obtained from the coil temperature increase and the heat-resisting temperature of coil insulating sheath material. (Exceeding the heat-resisting temperature may result in burning or short-circuiting.) The maximum allowable voltage also involves important restrictions which include the following
Must not cause thermal changes in or deterioration of the insulating material.

- Must not cause damage to other control devices.
- Must not cause any harmful effect on people.
- Must not cause fire.

Therefore, be sure to use the maximum allowable voltage beyond the value specified in the catalog.
As a rule, the rated voltage must be applied to the coil. A voltage exceeding the rated value, however, can be applied to the coil provided that the voltage is less than the maximum allowable voltage. It must be noted that continuous voltage application to the coil will cause a coil temperature increase thus affecting
characteristics such as electrical life and resulting in the deterioration of coil insulation.
Coating
The Relay mounted on the PCB may be coated or washed but do not apply silicone coating or detergent containing silicone, otherwise the silicone coating or detergent may remain on the surface of the Relay
PCB Mounting
If two or more Relays are closely mounted with the long sides of the Relays facing each other and soldering is performed with infrared radiation, the solder may not be properly exposed to the adjacent Relays as shown below.

Two or more Relays may be closely mounted with the short sides of the Relays facing each other

Surface-Mounting DPDT Relay

■ Long terminals ideal for soldering and mounting reliability.

- Space-saving inside-L terminal.
\square High dielectric strength between coil and contacts (2,000 VAC), and between contacts of different polarity (1,500 VAC).
- High impulse withstand voltages between coil and contacts, and between contacts of different polarity ($2,500 \mathrm{~V}, 210 \mu \mathrm{~s}$: Bellcore requirements).
■ Low power consumption (140 mW).
■ Bifurcated crossbar contact (Au-clad) and Fully sealed construction for high reliability.
- Applicable to IRS.
- High sealability after IRS.

■ Ultra-miniature at $15 \times 7.5 \times 9.4 \mathrm{~mm}$
($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$).

- Through-hole terminal is available

■ EN60950/EN41003 Supplementary Insulation-
certified type is available.

Ordering Information

Classification				Single-side Stable	Single-winding latching	Double-winding latching	Single-side stable EN60950/EN41003
DPDT	Fully sealed	Through-hole terminal		G6S-2	G6SU-2	G6SK-2	G6S-2-Y
		Surface mounting terminal	Inside-L	G6S-2G	G6SU-2G	G6SK-2G	G6S-2G-Y
			Outside-L	G6S-2F	G6SU-2F	G6SK-2F	G6S-2F-Y

Note: 1. When ordering, add the rated coil voltage to the model number.
Example: G6S-2F 12 VDC
Example: G6S-2F 12 VDC
2. When ordering tape packing, add -TR" to the model number.

Example: G6S-2F-TR 12 VDC
\square Tape packing
Be sure since -TR" is not part of the relay model number, it is not marked on the relay case.
Model Number Legend
G6S $\frac{\square}{1}-\frac{\square}{2} \frac{\square}{3}-\frac{\square}{4} \frac{\square}{5}$ VDC

1. Relay Function

None: Single-side stable
$\begin{array}{ll}\mathrm{U}: \quad \text { Single-winding latching } \\ \mathrm{K}: & \text { Double-winding latching }\end{array}$
2. Contact Form

2: DPDT
3. Terminal Shape

None: Through-hole terminal
G: Inside-L surface mounting terminal
4. Approved Standards

None: ULCSA
Y: EN60950/EN41003
5. Rated Coil Voltage
4.5, 5, 12, 24 VDC

Specifications

■ Coil Ratings

Single-side Stable Type (G6S-2, G6S-2F, G6S-2G)

Rated voltage	4.5 VDC	5 VDC	12 VDC	24 VDC
Rated current	31.0 mA	28.1 mA	11.7 mA	8.3 mA
Coil resistance	145Ω	178Ω	$2,880 \Omega$	
Must operate voltage	75% max. of rated voltage			
Must release voltage	10% min. of rated voltage			
Max. voltage	200% of rated voltage at $23^{\circ} \mathrm{C}$	170% of rated voltage at $23^{\circ} \mathrm{C}$		
Power consumption	Approx. 140 mW	Approx. 200 mW		

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

Single-winding Latching Type (G6SU-2, G6SU-2F, G6SU-2G)

Rated voltage		4.5 VDC	5 VDC	12 VDC	24 VDC
Rated current		22.2 mA	20 mA	8.3 mA	6.3 mA
Coil resistance		203Ω	250Ω	1,440 Ω	3,840 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.27	0.36	2.12	5.80
	Armature ON	0.14	0.18	1.14	3.79
Must set voltage		75\% max. of rated voltage			
Must reset voltage		75% min. of rated voltage			
Max. voltage		180% of rated voltage at $23^{\circ} \mathrm{C}$			
Power consumption		Approx. 1			Approx. 150 mW

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

Double-winding Latching Type (G6SK-2, G6SK-2F, G6SK-2G)

Rated voltage			4.5 VDC	5 VDC	12 VDC	24 VDC
Rated current			44.4 mA	40 mA	16.7 mA	12.5 mA
Coil resistance			101Ω	125Ω	720Ω	1,920 Ω
Coil inductance (H) (ref. value)	Set	Armature OFF	0.12	0.14	0.60	1.98
		Armature ON	0.074	0.088	0.41	1.23
	Reset	Armature OFF	0.082	0.098	0.46	1.34
		Armature ON	0.14	0.16	0.54	2.23
Must set voltage			75\% max. of rated voltage			
Must reset voltage			$75 \% \mathrm{~min}$. of rated voltage			
Max. voltage			170% of rated voltage at $23^{\circ} \mathrm{C}$			140% of rated voltage at $23^{\circ} \mathrm{C}$
Power consumption			Approx. 200 mW			Approx. 300 mW

[^2]Single-side Stable EN60950/EN41003 Approved Type (G6S-2-Y, G6S-2F-Y, G6S-2G-Y)

Rated voltage	5 VDC	12 VDC	24 VDC
Rated current	40 mA	16.7 mA	9.6 mA
Coil resistance	125Ω	720Ω	$2,504 \Omega$
Must operate voltage	75% max. of rated voltage		
Must release voltage	10% min. of rated voltage		
Max. voltage	170% of rated voltage at $23^{\circ} \mathrm{C}$	170% of rated voltage at $23^{\circ} \mathrm{C}$	
Power consumption	Approx. 200 mW	Approx. 230 mW	

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$,
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

- Contact Ratings

Load	Resistive load (cos $\varnothing=1$)
Rated Load	0.5 A at $125 \mathrm{VAC} ; 2 \mathrm{~A}$ at 30 VDC
Contact material	$\mathrm{Ag}(\mathrm{Au}$-clad)
Rated Carry Current	2 A
Max. switching voltage	$250 \mathrm{VAC}, 220 \mathrm{VDC}$
Max. switching current	2 A
Max. switching power	$62.5 \mathrm{VA}, 60 \mathrm{~W}$
Failure rate (reference value)	$10 \mu \mathrm{~A}$ at 10 mVDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

■ Characteristics

Contact resistance	$75 \mathrm{~m} \Omega$ max.
Operate (set) time	$4 \mathrm{~ms} \mathrm{max}$. . (mean value: approx. 2.5 ms ; latching type: approx. 2 ms)
Release (reset) time	$4 \mathrm{~ms} \mathrm{max}$. (mean value: approx. 1.5 ms ; latching type: approx. 2 ms)
Bounce Time	Operate: Approx. 0.5 ms Release: Approx. 0.5 ms Set/Reset: Approx. 0.5 ms
Max. operating frequency	Mechanical: 36,000 operations/hr Electrical: 1,800 operations/hr (under rated load)
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC)
Dielectric strength	2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts (double-winding latching) $1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between set and reset coil (double-winding latching)
Impulse withstand voltage	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ between coil and contacts $1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ between coil and contacts (double-winding latching) $2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ between contacts of different polarity $1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ between contacts of same polarity (conforms to FCC Part 68)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 2.5 \mathrm{~mm}$ single amplitude (5 mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $750 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 175G)
Endurance	Mechanical: 100,000,000 operations min. (at 36,000 operations/hr) Electrical: 100,000 operations min. (2 A at 30 VDC, resistive load: 1,200 operations/hr) 100,000 operations min. (0.5 A at 125 VAC , resistive load)
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing), $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (double-winding latching, 24 VDC)
Ambient humidity	Operating: 5% to 85%
Weight	Approx. 2 g

Engineering Data

Maximum Switching Power

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$ Note: The maximum coil voltage refers to the maximum value in a varying range of operating
power voltage, not a continuous voltage.
Reference Data
rent

$$
\begin{aligned}
& \text { Ambient Tempera } \\
& \text { Single-side Stable }
\end{aligned}
$$

Single-winding Latching
Double-winding Latching

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

Recommended Soldering Time vs. Surface PCB Temperature
(The temperature profile indicates the temperature on the surface of the PCB.

Dimensions
Note: All units are in millimeters unless otherwise indicated

Single-side Stable

G6S-2, G6S-2-Y

cosem

G6S-2F, G6S-2F-Y
Tolerance: ± 0.3

$\underset{\text { (Bottom View) }}{\text { Footprint }}$ Tolerance: ± 0.1

Terminal Arrangement Internal Connections
(Bottom View) (Bottom View)

Terminal Arrangement/ Internal Connections (Top View)

G6S-2G, G6S-2G-Y
Tolerance: ± 0.3

$123-5-7$
-14

Terminal Arrangement Internal Connections (Top View)

Single-winding Latching

G6IU-2
Tolerance: ± 0.3

G6SU-2F
Tolerance: ± 0.3

G6SU-2G
Tolerance: ± 0.3

Footprint (Bottom View)

 (Bottom View) Tolerance: ± 0.1Footprint
(Top View) \quad Terminal Arrangemen Internal Connectio
(Top View)
 Terminal Arrangement/
Internal Connections (Top View)

- Tape Packing

When ordering, add "-TR" before the rated coil voltage for tape packing
Tape type: TE2416R (Refer to EIAJ)
Reel type: R24E (Refer to EIAJ)
Relays per reel: 400

Orientation mark

Precautions
Use a DC power supply with 5% or less ripple factor to operate the coil.
Do not use the G6S where subject to strong external magnetic fields.
Do not use the G6S where subject to magnetic particles or excessive amounts of dust.

Do not reverse the polarity of the coil (+ , -)
Latching types are delivered in the reset position. We recommend that a reset voltage be applied in advance to start operation. Do not drop the G6S or otherwise subject it to excessive shock. Remove the relay from the packing immediately prior to usage.

Sub-miniature Relay (16 x $9.9 \times 8.4 \mathrm{~mm}$

 (L x W x H)) with DPDT Contact■ Unique moving-loop armature reduces relay
size, magnetic interference and contact bounce time.
■ Miniature permissible load: 0.01 mA 10 mVDC.
Bifurcated gold-clad crossbar contact.

- International 2.54 mm terminal pitch
- Special models available for FCC Part 68 compliance.

메자 FCC
Ordering Information

Classification		Single-side stable	Single-winding latching	Double-winding latching
DPDT	Fully sealed	G5A-234P	G5AU-234P	G5AK-234P

Note: When ordering, add the rated coil voltage to the model number.
Example: $G 5 \mathrm{~A}-234 \mathrm{P} 12$ VDC
L Rated coil voltage

Model Number Legend
G5A $\frac{\square}{1}-\frac{\square}{2} \frac{\square}{3} \frac{\square}{4} \frac{\square}{5}-\frac{\square}{6}$
$\frac{\square}{7}$ VDC

1. Relay Function

None: Single-side stable
U: Single-winding latching
K : Double-winding latching
2. Contact Form
$2: \quad$ DPDT
3. Contact Type

3: Bifurcated crossbar Ag (Au-clad)
4. Enclosure Ratings

4: Fully sealed
5. Terminals

P: Straight PCB
C: Self-clinching PCB
6. Special Function None: General-purpose FC: FCC part 68 compliance
U: For ultrasonically cleanable
7. Rated Coil Voltage
$3,5,6,9,12,24,48$ VDC

Specifications

- Coil Ratings

Single-side Stable Types

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		66.7 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	8.3 mA	5.8 mA
Coil resistance		45Ω	125Ω	180Ω	405Ω	720 ת	2,880 Ω	8,230 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.048	0.13	0.17	0.43	0.71	2.76	7.44
	Armature ON	0.043	0.12	0.16	0.4	0.68	2.70	7.25
Must operate voltage		70\% max. of rated voltage						
Must release voltage		$10 \% \mathrm{~min}$. of rated voltage						
Max. voltage		200% of rated voltage at $23^{\circ} \mathrm{C}$						170% of rated voltage at $23^{\circ} \mathrm{C}$
Power consumption		Approx. 200 mW						Approx. 280 mW

Single/Double-winding Latching Types

Rated voltage	3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current	66.7 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	8.3 mA
Coil resistance	45Ω	125Ω	180Ω	405Ω	720Ω	$2,880 \Omega$
Coil inductance	Armature OFF	0.02	0.06	0.08	0.17	0.29
(H) (ref. value)	Armature ON	0.02	0.05	0.07	0.14	0.24
Must operate voltage	80% max. of rated voltage	0.85				
Must release voltage	80% min. of rated voltage					
Max. voltage	200% of rated voltage at $23^{\circ} \mathrm{C}$					
Power consumption	Approx. 200 mW					

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

- Contact Ratings

Load	Resistive load (cos $\varnothing=1$)	Inductive load (cos $\varnothing=0.4)(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	
Rated Load	0.5 A at $30 \mathrm{VAC} ; 1 \mathrm{~A}$ at 30 VDC	0.1 A at $30 \mathrm{VAC} ; 0.2 \mathrm{~A}$ at 30 VDC	
Contact Material	$\mathrm{Ag}(\mathrm{Au}-\mathrm{clad})$		
Rated Carry Current	1 A		
Max. switching voltage	$125 \mathrm{VAC}, 125 \mathrm{VDC}$	0.5 A	
Max. switching current	1 A	$12.5 \mathrm{VA}, 11 \mathrm{~W}$	
Max. switching power	$37.5 \mathrm{VA}, 33 \mathrm{~W}$		
Failure rate (reference value)	0.01 mA at 10 mVDC		

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation.

■ Characteristics

Contact resistance	$50 \mathrm{~m} \Omega$ max.
Operate (set) time	Single-side stable types: 5 ms max. (mean value: approx. 2.4 ms) Latching types: 5 ms max. (mean value: approx. 2 ms)
Release (reset) time	Single-side stable types: 5 ms max. (mean value: approx. 1.1 ms) Latching types: 5 ms max. (mean value: approx. 1.8 ms)
Bounce Time	Operate: Approx. 0.5 ms Release: Approx. 0.5 ms
Min. set/reset signal width	Latching type: 7 ms
Max. operating frequency	Mechanical: 36,000 operations/hr Electrical: 1,800 operations/hr (under rated load)
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC$)$
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity $100 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between set and reset coils (double-winding type only)
Impulse withstand voltage	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ between contacts of same polarity (conforms to FCC Part 68)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30G)
Endurance	Mechanical: 50,000,000 operations min. (at 36,000 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr)
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85\%
Weight	Approx. 3 g

PCB Signal Relay - G5A
OmROn
Engineering Data

Switching voltage (V)

Ambient Temperature vs
Maximum Coil Voltage

Ambient temperature (${ }^{\circ}$) Note: The maximum coil voltage refers to the max mum value in a varying range of operating
power voltage, not a continuous voltage.

- Approved Standards

UL114, UL478 (File No.E41515)/CSA C22.2 No.0, No. 14 (File No.LR24825)

Model	Contact form	Coil ratings	Contact ratings
G5A-234P	DPDT	3 to 48 VDC	$0.5 \mathrm{~A}, 60 \mathrm{VAC}$
		3 to 24 VDC	$0.5 \mathrm{~A}, 60 \mathrm{VDC}$
G5AU-234P			$1 \mathrm{~A}, 30 \mathrm{VDC}$

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated
2. Orientation marks are indicated as follows: $\square \square \square$

G5A-234P

*Average value
Terminal Arrangemen internal Connections (Bottom View)

G5AK-234P

*Average value

verage value

S: Set coil

Miniature Relay for Signal Circuits

Wide switching power of $10 \mu \mathrm{~A}$ to 2 A
■ High dielectric strength coil-contacts:1,000 VAC; open contacts: 750 VAC.
■ Conforms to FCC Part 68 requirements.
$\square A g+$ Au clad bifurcated crossbar contacts and fully sealed for high contact reliability.
New $150-\mathrm{mW}$ relays with high-sensitivity.

미(ㅏㅇ FCC

Ordering Information

Classification	Contact form	Contact type	Contact material	Enclosure Rating	Model
Standard	DPDT	Bifurcated crossbar	Ag + Au-clad	Fully sealed	G5V-2
High-sensitivity				G5V-2-H1	

Note: When ordering, add the rated coil voltage to the model number. Example: G5V-2 12 VDC

Rated coil voltage
Model Number Legend

1. Contact Form

2: DPDT
2. Classification H1: High-sensitivity
3. Rated Coil Voltage $3,5,6,9,12,24,48$ VDC

Specifications

- Coil Rating

Standard Models

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		166.7 mA	100 mA	83.3 mA	55.6 mA	41.7 mA	20.8 mA	12 mA
Coil resistance (W)		18Ω	50Ω	72Ω	162Ω	288 ת	1,152 Ω	$4,000 \Omega$
Coil inductance (H) (ref. value)	Armature OFF	0.04	0.09	0.16	0.31	0.47	1.98	7.23
	Armature ON	0.05	0.11	0.19	0.49	0.74	2.63	10.00
Must operate voltage		70\% max. of rated voltage						
Must release voltage		$5 \% \mathrm{~min}$. of rated voltage						
Max. voltage		120% of rated voltage at $23^{\circ} \mathrm{C}$						
Power consumption		Approx. 500 mW						Approx. 580 mW

High Sensitivity Models

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		50 mA	30 mA	25 mA	16.7 mA	12.5 mA	8.33 mA	6.25 mA
Coil resistance		60Ω	166.7Ω	240Ω	540Ω	960Ω	2,880 Ω	7,680 Ω
Coil inductance	Armature OFF	0.18	0.46	0.70	1.67	2.90	6.72	20.1
(H) (ref. value)	Armature OFF	0.57	0.71	0.97	2.33	3.99	9.27	26.7
Must operate voltage		75% max. of rated voltage						
Must release voltage		5% min. of rated voltage						
Max. voltage		180% of rated voltage at $23^{\circ} \mathrm{C}$						$\begin{array}{\|l\|} \hline 150 \% \text { of } \\ \text { rated voltage } \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{array}$
Power consumption		Approx. 150 mW					Approx. 200 mW	Approx. 580 mW

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$

- Contact Ratings

Item	Standard models	High sensitivity models	
Load	Resistive load ($\cos \varnothing=1$)		
Rated load	0.5 A at $125 \mathrm{VAC} ; 2 \mathrm{~A}$ at 30 VDC	0.5 A at $125 \mathrm{VAC} ; 1 \mathrm{~A}$ at 24 VDC	
Contact material	Ag + Au-clad		
Rated carry current	2 A	1 A	
Max. switching voltage	$125 \mathrm{VAC}, 125 \mathrm{VDC}$	$62.5 \mathrm{VA}, 24 \mathrm{~W}$	
Max. switching current	2 A		
Max. switching power	$62.5 \mathrm{VA}, 60 \mathrm{~W}$		
Failure rate (reference value)	0.01 mA at 10 mVDC		

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

■ Characteristics

Item	Standard models	High sensitivity models
Contact resistance	$50 \mathrm{~m} \Omega$ max.	$100 \mathrm{~m} \Omega$ max.
Operate time	7 ms max .	
Release time	3 ms max .	
Bounce Time	Operate: approx. 0.3 ms Release: approx. 1.5 ms	
Max. operating frequency	Mechanical: 36,000 operations/hr Electrical: 1,800 operations/hr (under rated load)	
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC)	
Dielectric strength	1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ between coil and contacts (conforms to FCC part 68)	
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)	
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 20G)	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10G)
Endurance	Mechanical: $15,000,000$ operations min. (at 36,000 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr)	
Ambient temperature	Operating: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)	Operating: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85%	
Weight	Approx. 5 g	

- Approved Standards

UL478, UL1950, UL508 (File No. E41515)/CSA C22.2 No.0,
No. 14 (File No. LR24825)

Contact form	Coil rating		Contact rating	
		G5V-2	G5V-2-H1	
DPDT	3 to 48 VDC	$0.6 \mathrm{~A}, 125 \mathrm{VAC}$ (general use)	$0.5 \mathrm{~A}, 125 \mathrm{VAC}$ (general use)	
		$0.6 \mathrm{~A}, 110 \mathrm{VDC}$ (resistive load)	$0.2 \mathrm{~A}, 110 \mathrm{VDC}$ (resistive load)	
		$2 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive load)	$1 \mathrm{~A}, 24 \mathrm{VDC}$ (resistive load)	

Engineering Data

Maximum Switching Power G5V-2

Switching voltage (V)

G5V-2-H1

Switching voltage (V)

Endurance

Switching current (A)
Note

Ambient Temperature vs.

 Maximum Coil Voltage G5V-2

Ambient temperature $\left({ }^{\circ}\right)$ Ambient temperature (the maximum coil voltage refers to the maxi mum value in a varying range of operating
power voltage, not a continuous voltage.

Switching current (A)

Ambient temperature (${ }^{\circ}$)

Note: The maximum coil voltage refers to the maxi mow ralue in a varying ratane, not a continuous voltage.

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: \square

PCB Signal Relay - G6A

Fully sealed Relay with High Impulse Dielectric for Use in Telecommunications Equipment

- High sensitivity can be driven by digital circuits.
- Horizontal design allows use in 1/2-inch PCB racks.
- Impulse withstand voltage meets FCC Part 68 requirements.
- Relays can be mounted side-by-side due to low magnetic leakage.
\square Single- and double-winding latching relays also available.

제자 FCC

- Special models available for low thermoelectromotive force.

Ordering Information

Single-side Stable Type

Contact		Ag + Au-clad	AgPd + Au-clad
General purpose	DPDT	G6A-274P-ST-US	G6A-234P-ST-US
	4PDT	G6A-474P-ST-US	G6A-434P-ST-US
Low-sensitivity	DPDT	G6A-274P-ST40-US	G6A-234P-ST40-US
	4PDT	G6A-474P-ST40-US	G6A-434P-ST40-US

Single-winding Latching Type

Contact		Ag + Au-clad	AgPd + Au-clad
General purpose	DPDT	G6AU-274P-ST-US	G6AU-234P-ST-US
	4PDT	G6AU-474P-ST-US	G6AU-434P-ST-US

Double-winding Latching Type

Contact		Ag + Au-clad	AgPd + Au-clad
General purpose	DPDT	G6AK-274P-ST-US	G6AK-234P-ST-US
	4PDT	G6AK-474P-ST-US	G6AK-434P-ST-US
Low-sensitivity	DPDT	G6AK-274P-ST40-US	G6AK-234P-ST40-US
	4PDT	G6AK-474P-ST40-US	G6AK-434P-ST40-US

Note: When ordering, add the rated coil voltage to the model number.
Example: G6A-274P-ST-US 12 VDC
Rated coil voltage
Model Number Legend

$$
\begin{aligned}
& \text { None: Single-side stable } \\
& \begin{array}{ll}
\mathrm{U}: & \text { Single-winding latching } \\
\mathrm{K}: & \text { Double-winding latching }
\end{array} \\
& \text { 2. Contact Form } \\
& \begin{array}{ll}
\text { 2: DPDT } \\
\text { 2: } & \text { 4PDT }
\end{array}
\end{aligned}
$$

Contact Type
7: Bifurcated crossbar
Ag (uu-clad) contact
3: Bifurcated crossbar Bifurcated crossbar
AgPd (Au-clad) conta
Enclosure Ratings
4. Enclosure Ratings
4: Fully sealed
5. Terminals

P: Straight PCB
6. Stand-off

ST: Stand-off 0.64 mm
pecial Function
40: Low-sensitivity (400 mW)
LT : Low thermoelectromotive force
8. Approved Standards

Approved Standards
9. Rated Coil Voltage Rated
$3,4.5,5,6,9,12,24,48$ VDC

Specifications

■ Coil Ratings

General-purpose, DPDT Relays

Rated voltage	3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current	66.7 mA	44.6 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	8.3 mA	4.9 mA
Coil resistance	45Ω	101Ω	125Ω	180Ω	405Ω	720Ω	$2,880 \Omega$	$9,750 \Omega$
Coil inductance	Armature OFF	0.07	0.16	0.2	0.29	0.63	1.1	4.5
(H) (ref. value)	Armature ON	0.065	0.14	0.18	0.26	0.57	1.06	4.1
Must operate voltage	70% max. of rated voltage	12.5						
Must release voltage	10% min. of rated voltage							
Max. voltage	200% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption	Approx. 200 mW							

General-purpose, 4PDT Relays

Rated voltage	3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current	120 mA	79.9 mA	72.5 mA	60 mA	40 mA	30 mA	15 mA	7.5 mA
Coil resistance	25Ω	56.3Ω	69Ω	100Ω	225Ω	400Ω	$1,600 \Omega$	$6,400 \Omega$
Coil inductance	Armature OFF	0.05	0.11	0.14	0.2	0.45	0.8	3.2
(H) (ref. value)	Armature ON	0.045	0.095	0.12	0.17	0.38	0.68	2.7
Must operate voltage	70% max. of rated voltage	10.9						
Must release voltage	10% min. of rated voltage							
Max. voltage	150% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption	Approx. 360 mW							

Low-sensitivity DPDT Relays

Rated voltage	3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current	133.3 mA	88.9 mA	80 mA	66.7 mA	44.3 mA	33.3 mA	16.7 mA	8.3 mA
Coil resistance	22.5Ω	50.6Ω	62.5Ω	90Ω	203Ω	360Ω	$1,440 \Omega$	$5,760 \Omega$
Coil inductance (H) (ref. value)	Armature OFF	0.03	0.065	0.08	0.11	0.27	0.52	2.1
	Armature ON	0.02	0.06	0.07	0.1	0.23	0.43	1.8
Must operate voltage	70% max. of rated voltage	6.4						
Must release voltage	10% min. of rated voltage							
Max. voltage	150% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption	Approx. 400 mW							

Low-sensitivity 4PDT Relays

Rated voltage	3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current	133.3 mA	88.9 mA	80 mA	66.7 mA	44.3 mA	33.3 mA	16.7 mA	8.3 mA
Coil resistance	22.5Ω	50.6Ω	62.5Ω	90Ω	203Ω	360Ω	$1,440 \Omega$	$5,760 \Omega$
Coil inductance	Armature OFF	0.035	0.1	0.12	0.17	0.42	0.7	2.8
(H) (ref. value)	Armature ON	0.02	0.07	0.09	0.13	0.3	0.52	2.2
Must operate voltage	70% max. of rated voltage	8.6						
Must release voltage	10% min. of rated voltage							
Max. voltage	150% of rated voltage at $23^{\circ} \mathrm{C}$							

Single-winding Latching, DPDT Relays

Rated voltage		3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		33.7 mA	22.2 mA	20 mA	16.7 mA	11.1 mA	8.3 mA	4.2 mA	2.5 mA
Coil resistance		89Ω	202Ω	250Ω	360Ω	810Ω	1,440 Ω	5,760 Ω	19,000 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.15	0.34	0.44	0.64	1.38	2.5	9.2	28.5
	Armature ON	0.11	0.25	0.35	0.48	1.07	2	7.2	22
Must operate voltage		70\% max. of rated voltage							
Must release voltage		70% max. of rated voltage							
Max. voltage		200% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption		Approx. 100 mW							Approx. 125 mW
Single-winding Latching, 4PDT Relays									
Rated voltage		3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		106.8 mA	71.2 mA	64 mA	53.3 mA	35.6 mA	26.7 mA	13.3 mA	6.7 mA
Coil resistance		28.1Ω	63.2Ω	78.1Ω	112.5Ω	253Ω	450Ω	$1,800 \Omega$	$7,200 \Omega$
Coil inductance (H) (ref. value)	Armature OFF	0.03	0.06	0.08	0.11	0.25	0.45	1.8	7
	Armature ON	0.02	0.04	0.06	0.08	0.18	0.32	1.3	5.2
Must operate voltage		70\% max. of rated voltage							
Must release voltage		70\% max. of rated voltage							
Max. voltage		150% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption		Approx. 320 mW							

Double-winding Latching, DPDT Relays

Rated voltage			3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current			66.7 mA	40.2 mA	36 mA	30 mA	20 mA	15 mA	7.5 mA	4.2 mA
Coil resistance			45Ω	112Ω	139Ω	200Ω	450Ω	800Ω	3,200 Ω	11,520 Ω
Coil inductance (H) (ref. value)	Set	Armature OFF	0.037	0.09	0.11	0.16	0.38	0.6	2.1	8.5
		Armature ON	0.027	0.065	0.08	0.12	0.28	0.45	1.5	6.3
	Reset	Armature OFF	0.027	0.065	0.08	0.12	0.28	0.45	1.5	6.3
		Armature On	0.037	0.09	0.11	0.16	0.38	0.6	2.1	8.5
Must operate voltage			70\% max. of rated voltage							
Must release voltage			70\% max. of rated voltage							
Max. voltage			200% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption			Approx. 200 mW	Approx. 180 mW						Approx. 200 mW

Double-winding Latching, 4PDT Relays

Rated voltage			3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current			106.8 mA	71.2 mA	64 mA	53.3 mA	35.6 mA	26.7 mA	13.3 mA	6.7 mA
Coil resistance			28.1Ω	63.2Ω	78.1Ω	112.5Ω	253Ω	450Ω	1,800 Ω	7,200 Ω
Coil inductance (H) (ref. value)		Armature OFF	0.03	0.06	0.08	0.11	0.25	0.45	1.8	7
		Armature ON	0.02	0.04	0.06	0.08	0.18	0.32	1.3	5.2
	Reset	Armature OFF	0.02	0.04	0.06	0.08	0.18	0.32	1.3	5.2
		Armature ON	0.03	0.06	0.08	0.11	0.25	0.45	1.8	7
Must operate voltage			70\% max. of rated voltage							
Must release voltage			70\% max. of rated voltage							
Max. voltage			150% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption			Approx. 320 mW							

PCB Signal Relay - G6A
Double-winding Latching, Low-sensitivity DPDT Relays

Rated voltage	3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC	
Rated current	120 mA	79.9 mA	72.5 mA	60 mA	40 mA	30 mA	15 mA	7.5 mA	
Coil resistance	25Ω	56.3Ω	69Ω	100Ω	225Ω	400Ω	$1,600 \Omega$	$6,400 \Omega$	
Coil inductance (H) (ref. value)	Set	Armature OFF	0.015	0.04	0.05	0.07	0.16	0.28	1.1

Double-winding Latching, Low-sensitivity 4PDT Relays

Rated voltage	3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC	
Rated current	120 mA	79.9 mA	72.5 mA	60 mA	40 mA	30 mA	15 mA	7.5 mA	
Coil resistance	25Ω	56.3Ω	69Ω	100Ω	225Ω	400Ω	$1,600 \Omega$	$6,400 \Omega$	
Coil inductance (H) (ref. value)	Set	Armature OFF	0.02	0.045	0.065	0.09	0.18	0.3	1.2

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

- Contact Ratings

Item	G6A-234P-ST(40)-US/434P-ST(40)-US		G6A-274P-ST(40)-US/474P-ST(40)-US	
Load	Resistive load ($\cos \varnothing=1$)	Inductive load ($\cos \theta=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	Resistive load $(\cos \varnothing=1)$	Inductive load $(\cos \varnothing=0.4 ; L / R=7 \mathrm{~ms})$
Rated Load	0.3 A at 125 VAC ; 1 A at 30 VDC	0.2 A at 125 VAC ; 0.5 A at 30 VDC	0.5 A at 125 VAC ; 2 A at 30 VDC	0.3 A at 125 VAC ; 1 A at 30 VDC
Contact Material	AgPd (Au-clad)		Ag (Au-clad)	
Rated Carry Current	3 A			
Max. switching voltage	$250 \mathrm{VAC}, 220 \mathrm{VDC}$			
Max. switching current	2 A	1 A	2 A	1 A
Max. switching power	$125 \mathrm{VA}, 60 \mathrm{~W}$	$62.5 \mathrm{VA}, 30 \mathrm{~W}$	$125 \mathrm{VA}, 60 \mathrm{~W}$	$62.5 \mathrm{VA}, 30 \mathrm{~W}$
Failure rate (reference value)	0.01 mA at 10 mVDC			

Item	G6AK-234P-ST(40)-US/G6AK-434P-ST(40)-US G6AU-234P-ST-US/G6AU-434P-ST-US		GG6AK-274P-ST(40)-US/G6AK-474P-ST(40)-U G6AU-274P-ST-US/G6AU-474P-ST-US	
Load	Resistive load ($\cos \varnothing=1$)	Inductive load $(\cos \sigma=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load $(\cos \varnothing=1)$	$\begin{aligned} & \text { Inductive load } \\ & (\cos \varnothing=0.4 ;\llcorner R=7 \mathrm{~ms}) \end{aligned}$
Rated Load	0.3 A at 125 VAC ; 1 A at 30 VDC	0.2 A at 125 VAC ; 0.5 A at 30 VDC	0.5 A at 125 VAC ; 2 A at 30 VDC	0.25 A at 125 VAC ; 1 A at 30 VDC
Contact Material	AgPd (Au-clad)		Ag (Au-clad)	
Rated Carry Current	3 A		3 A	
Max. switching voltage	$250 \mathrm{VAC}, 220 \mathrm{VDC}$		250 VAC, 220 VDC	
Max. switching current	2 A	1 A	2 A	1 A
Max. switching power	$125 \mathrm{VA}, 60 \mathrm{~W}$	$62.5 \mathrm{VA}, 30 \mathrm{~W}$	$125 \mathrm{VA}, 60 \mathrm{~W}$	$62.5 \mathrm{VA}, 30 \mathrm{~W}$
Failure rate (reference value)	0.01 mA at 10 mVDC		0.01 mA at 10 mVDC	

PCB Signal Relay - G6A

■ Characteristics

Contact resistance	$50 \mathrm{~m} \Omega$ max.
Operate (set) time	Single-side stable types: DPDT: 5 ms max. (mean value: approx. 3 ms) 4PDT: 7 ms max. (mean value: approx. 3.8 ms) Latching types: DPDT: 5 ms max. (mean value: approx. 2.5 ms) 4PDT: 7 ms max. (mean value: approx. 3.3 ms)
Release (reset) time	Single-side stable types: DPDT: 3 ms max. (mean value: approx. 1.2 ms) 4PDT: 5 ms max. (mean value: approx. 1.3 ms) Latching types: DPDT: 5 ms max. (mean value: approx. 2.5 ms) 4PDT: 7 ms max. (mean value: approx. 2.7 ms)
Bounce Time	Operate: mean value: approx. 0.5 ms Release: mean value: approx. 0.5 ms
Min. set/reset signal width	DPDT: 7 ms min. 4PDT: 15 ms min.
Max. operating frequency	Mechanical: 36,000 operations/hr Electrical: 1,800 operations/hr (under rated load)
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC$)$; except for set-reset
Dielectric strength	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity $250 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between set and reset coils
Impulse withstand voltage	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (conforms to FCC Part 68)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 2.5-\mathrm{mm}$ single amplitude ($5-\mathrm{mm}$ double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 1.65-\mathrm{mm}$ single amplitude ($3.3-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: DPDT: $500 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 50 G) 4PDT, Latching type: $300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30G)
Endurance	Mechanical: 100,000,000 operations min. (at 36,000 operations/hr) Electrical: 500,000 operations min. (at 1,800 operations/hr)
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85\%
Weight	DPDT: Approx. 3.5 g 4PDT: Approx. 6 g

- Approved Standards

UL114, UL478 (File No. E41515)/CSA C22.2 No.0, No. 14 (File No. LR24825

Model	Contact form	Coil ratings	Contact ratings
G6A-234P-ST(40)-US G6AK-234P-ST(40)-US G6AU-234P-ST-US	DPDT	3 to 48 VDC	0.6 A, 125 VAC 1 A, 30 VDC 0.6 A, 110 VDC
G6A-274P-ST(40)-US G6AK-274P-ST(40)-US G6AU-274P-ST-US	DPDT		0.6 A, 125 VAC 2 A, 30 VDC 0.6 A, 110 VDC
G6A-434P-ST(40)-US G6AK-434P-ST(40)-US G6AU-434P-ST-US	4PDT		0.6 A, 125 VAC 1 A, 30 VDC 0.6 A, 110 VDC
G6A-474P-ST(40)-US G6AK-474P-ST(40)-US G6AU-474P-ST-US	4PDT		0.6 A, 125 VAC 2 A, 30 VDC 0.6 A, 110 VDC

Engineering Data
 Endurance
DPDT

Switching current (A)

Ambient Temperature vs.
Maximum Coil Voltage

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

Switching current (A)

Dimensions

in millimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: $\square \square \square \square$

The maximum coil voltage refers
to the maximum value in a varying tane maximum value in a varying ot a continuous voltage.

Note: 1. All units are in millimeters unless otherwise indicated

G6A-434P-ST(40)-US, G6A-474P-ST-US

Terminal Arrangement/ (Bottom View)

Mounting Holes (Bottom View)

Tolerance: ± 0.1

G6AK-234P-ST(40)-US
G6AK-274P-ST(40)-US

Terminal Arrangement/

Mounting Holes
(Bottom View)
(Bottom View)

High-Frequency Signal Relay - G6Y
OmROn

Switching Structure Based on the

Micro Strip Line is Used to Combine

High Performance

and Cost-effectiveness

- Isolation characteristics of 65 dB or better at 900 MHz .
Effective insertion loss characteristics of 0.2
dB or better at 900 MHz (half the loss of earlier models).
- Fully sealed construction provides excellent environmental resistance.
- Improved shock-resistance (double the resistance of earlier models)

Ordering Information

Class	Sealing	Fully sealed	
	Contact configuration	Rated coil voltage	Model
Basic Type	SPDT	4.5 VDC	G6Y-1
		5 VDC	
		9 VDC	
		12 VDC	
		24 VDC	

Model Number Legend
G6Y- \square VDC

1. Number of contact poles

1: Single pole (SPDT contact)

■ Basic Specifications

- Contact Mechanism: Double-braking bifurcated contac
- Contact Material: Gold alloy

2. Rated Coil Voltage
4.5, 5, 9, 12, 24 VDC

- Sealing: Fully sealed
- Terminal Configuration: Printed circuit board terminal configuration

Application Examples
Signal Switching in Various Communications Equipment

- Wired Communications: Cable TV, captain systems, and video response systems (VRS)
- Wireless Communications: Transceivers, ham radio, car telephones, high-level TV, fax machines, satellite broadcasting, text multiplex broadcasting, and pay TV
- Public Equipment: VCRs, TVs, video disk players, and TV games
- Industrial Equipment: Measuring equipment, test equipment, and multiplex transmission devices

[^3]High-Frequency Signal Relay - G6Y
OmROn

- Ratings

Operational Coil

Note: The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$
The "Max. allowed voltage" is the maximum voltage that can be applied to the relay coil. It is not the maximum voltage that can be applied continuously.

Contact Ratings

Load	Resistive load
Rated voltage	0.01 A at 30 VAC 0.01 A at 30 VDC $900 \mathrm{MHz}, 1 \mathrm{~W}$ (see note)
Rated carry current	0.5 A
Max. switching voltage	30 VAC 30 VDC
Max. switching current	0.5 A
Max. switching power (reference value)	AC10VA DC10W

(reference value)
(reference value) DC10W

- Characteristics

Contact resistance (see note 1)	$100 \mathrm{~m} \Omega$ max.
Operating time	$10 \mathrm{~ms} \mathrm{max}$. (approx. 5 ms)
Release time	$5 \mathrm{~ms} \mathrm{max}$. (approx. 1 ms)
Insulation resistance (see note 2)	$100 \mathrm{~m} \Omega \mathrm{~min}$.
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity $500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and ground and between contacts and ground
Vibration resistance	Destruction: 10 Hz to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (1.5 mm double amplitude) Malfunction: 10 Hz to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $500 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 1,000,000 operations min. (at 1,800 operations/hr) Electrical: 300,000 operations min. (under rated load at 1,800 operations/hr)
Failure rate (reference value (see note 3))	$10 \mathrm{mVDC}, 10 \mu \mathrm{~A}$
Ambient temperature	Operating: - $40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85\%
Weight	Approx. 5 g

Note: The table above shows preliminary values.

1. Measurement Conditions: $5 \mathrm{VDC}, 100 \mathrm{~mA}$, voltage drop method
2. Measurement Conditions: Measured at the same points as the dielectric strength using a $500-\mathrm{VDC}$ ohmmeter.
3. This value is for a switching frequency of 120 operations/minute.

High-frequency Characteristics

Item	$\mathbf{2 5 0} \mathbf{~ M H z}$	$\mathbf{9 0 0} \mathbf{~ M H z}$	$\mathbf{2 . 5 ~ G H z}$
Isolation	80 db min.	65 dB min.	30 dB min.
Insertion loss	0.5 dB max.	0.5 dB max.	-
V.SWR	1.5 max.	1.5 max.	-
Max. carry power	10 W	-	
Max. switching power	10 W (see note 3)	-	

Note: 1. The impedance of the measuring system is 50Ω.
2. The table above shows preliminary values
3. This value is for a load with VSWR $\times 1$.

Dimensions
Note: All units are in millimeters unless otherwise indicated

Terminal Arrangement/
Internal Connecti
(Bottom View)

$$
\begin{aligned}
& \operatorname{TF}^{-\cdots} \\
& 11+\overline{11}-\overline{r t}
\end{aligned}
$$

(There is no polarity to the coil.) The shaded and unshaded parts indi-
cate the product's directional marks.

High-Frequency Signal Relay - G6Y

- Correct Use

Airtightness when cleaning will last 1 minute at $70^{\circ} \mathrm{C}$. Complete cleaning within these conditions.
MICRO STRIP LINE DESIGN

- It is advantageous to use the Micro Strip Line in high-frequency transmission circuits because a low-loss transmission can be constructed with this method. By etching the dielectric base which has copper foil attached to both sides, the Micro Strip Line will have a concentrated electric field between the lines and ground as shown in the following diagram.

- The characteristic impedance of the lines Z_{0} is determined by the kind of base (dielectric constant), the base's thickness, and he width of the lines, as expressed in the following equation.

$$
\mathrm{Z}_{\mathrm{o}}=\frac{377}{\sqrt{\boldsymbol{\varepsilon}_{\mathrm{r}}} \frac{\mathrm{~W}}{\mathrm{H}}\left\{1+\frac{2 \mathrm{H}}{\pi \mathrm{~W}}\left[1+\operatorname{In} \frac{\pi \mathrm{W}}{\mathrm{H}}\right]\right\}}
$$

W: Line width
ε_{r} : Effective dielectric constant
H: Dielectric base thickness
The copper foil thickness must be less than H .

- The following graph shows this relationship.

For example, when creating 50Ω lines using a glass epoxy base with a thickness of 1.6 mm , the above graph will yield a w/h ratio 1.6 mm , the width will be $\mathrm{h} \infty 1.7 \approx 2.7 \mathrm{~mm}$.

- The thickness of the copper foil "t" is ignore
method, but it must be considered because large errors will occur in extreme cases such as a foil thickness of $t \approx w$. urthermore, with the Micro Strip Line design, the lines are too short for the G6Y's intended frequency bandwidths, so we can
-The spacing of the Strip Lines and ground pattern should be comparable to the width of the Strip Lines. Design the pattern with the shotest Excessive distances will adversely effect the high-frequency characteristics.
- Spread the ground patterns as widely as possible so that Spread the ground patterns as widely as possible so that
potential differences are unlikely to develop between the ground patterns.
- To avoid potential short-circuits, do not place the pattern's leads near the point where the bottom of the Relay attaches to the boarc
BENDING THE MICRO STRIP LINE

EXAMPLES OF MOUNTING DESIGNS

Since this example emphasizes reducing mounting costs, expensive mounting methods such as through-hole boards are not shown. If such methods are to be used, the characteristics Using a Double-sided Paper Epoxy Board
When double-sided paper epoxy boards are used, the dielectric constant will be approximately the same as that of glass epoxy boards ($\varepsilon_{r}=4.8$).
The width of the Strip Lines for a board with $\mathrm{t}=1.6 \mathrm{~mm}$ is 2.7 mm for 50Ω and 1.3 mm for 75Ω. For a board with $\mathrm{t}=1.0 \mathrm{~mm}$ the width is 1.7 mm for 50Ω and 0.8 mm for 75Ω.
The following diagram shows an example pattern and the Micro Strip Lines connected to the contact terminals are formed with
pattern widths derived from the description above. The width between the Micro Strip Lines and ground patterns are comparable to the Micro Strip Line width.
There are jumpers between the upper and lower patterns at the points marked with Xs in the diagram. Improved characteristics can be obtained with more jumper locations. This method yields isolation characteristics of 65 dB to 75 dB at 500 MHz and 50 dB at 900 MHz
At this point in the diagram the component side is the $2.0 \mathrm{~mm} \infty 2.0 \mathrm{~mm}$ of the side, but set aside approximately terminals.

Using a Single-sided Board
When a single-sided board is used, isolation characteristics of only 60 dB to 70 dB at 200 MHz can be obtained. When high frequency bands are to be used with a single-sided board, a metal to the ground pattern.

With this method a metal plate is placed between the Relay and base and connected to the pattern, as shown in the above
diagram. The important point here is that 3 locations (the G6Y's ground terminal, the metal plate's bent tabs (A), and the ground pattern) are soldered together at the same time. This method combines an inexpensive single-sided board and inexpensive metal plate to yield the same characteristics as a double-sided board and good characteristics are obtained by grounding the G6Y's ground terminal and metal plate in the same place
From this point, the methods used for Strip Line design are the same as for the double-sided board.
Mounting Precautions
Be sure to securely attach the Relay's base surface to the board during installation. The isolation characteristics will be affected if the Relay lifts off the board.
As shown in the enlarged illustration of the cross-section of part A, the G6Y is designed to ensure better high-frequency
characteristics if the stand-off part of the G6Y is in contact with the ground pattern of the PCB. Therefore, the ground terminal and stand-off part are electrically connected internally.
Should the through hole electrically connected to the contact terminal come in contact with the stand-off part, the contact will be short-circuited with the ground, which may cause an accident. As a preventive measure, keep at least a distance of 0.3 mm between the stand-off part and the through hole or land.
For example, if the terminal hole on the PCB is 1 mm in diameter 0.3 mm or more will be provided between the through hole and stand-off part.

PCB Mounting

Cross-section of Part A

Surface-mounting High-frequency Relay - G6K(U)-2F-RF OmROn
Surface-mounting, 1-GHz-Band,
Miniature, DPDT, High-frequency
Relay

- Superior high-frequency characteristics (at 1 GHz), such as an isolation of 20 dB min. between contacts of the same polarity or 30 dB min. between contacts of different polarity with an insertion loss of 0.2 dB max.
- Miniaturized to $10.3 \times 6.9 \times 5.4 \mathrm{~mm}$
($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$).
■ Rated power consumption of 100 mW with high sensitivity.
- Single-side stable and single-winding latching models available.

Ordering Information

Model Number Legend
G6K $\square-\square \square-\frac{\square}{2} \frac{\square}{4}$

1. Relay Function

None: Single-side stable
U: Single-winding latching
2. Classification

2: DPDT
3. Terminal Shape

F: Surface-mounting terminals
4. Special Function

RF: High-frequency compatible

■ List of Models

Standard Models with Surface-mounting Terminals

Classification	Structure	Contact form	Rated coil voltage	Model
Single-side stable	Plastic sealed	DPDT	3, 4.5, 5, 12, and 24 VDC	G6K-2F-RF
Single-winding latching			3, 4.5, 5, 12, and 24 VDC	G6KU-2F-RF

Application Examples

- Measurement devices
- Communications devices
- Broadcasting and audio-visual devices

Surface-mounting High-frequency Relay - G6K(U)-2F-RF OmROn

Specifications
- Contact Ratings Load Resistive load Rated load $125 \mathrm{VAC}, 0.3 \mathrm{~A}$ $30 \mathrm{VDC}, 1 \mathrm{~A}$ $1 \mathrm{GHz}, 1 \mathrm{~W}$ (See note.) Rated carry current 1 A Max. switching voltage 125 VAC or 60 VDC Max. switching current 1 A\begin{tabular}{l}
\end{tabular} |

Note: This value is for a V.SWR of 1.2 max. at the load.

- High-frequency Characteristics

	Frequency	1 GHz
Item		
Isolation	Between contacts of the same polarity	20 dB min.
	Between contacts of different polarity	30 dB min.
Insertion loss		0.2 dB max.
V.SWR		1.2 max.
Maximum carry power		3 W (See note 3.)
Maximum switching power		1 W (See note 3.)

Note: 1. The impedance of the measurement system is 50Ω
2. The above values are initial values.
3. These values are for a V.SWR of 1.2 max . at the load.

- Coil Ratings

Single-side Stable Models

G6K-2F-RF

| Must operate voltage | 80% max. of rated voltage |
| :--- | :--- | :--- |
| (V) | |

(V)	
Must release voltage	10% min. of rated voltage
(V)	

Maximum voltage (V)	150% of rated vollage

$\begin{array}{l}\text { Power consumption } \\ (\mathrm{mW})\end{array}$	Approx. 100 mW

Single-winding Latching Models
G6KU-2F-RF

Rated voltage (VDC)	3	4.5	5	12	24							
Pe							Rated current (mA)	33.0	23.2	21.1	9.1	4.6
:---	:---	:---	:---	:---	:---							
							Coil resistance (2)	91	194	237	1,315	
:---	:---	:---	:---	:---	Must operate voltage 75% max. of rated voltage	(V)						
:---	:---											
Must re												

Mustr release voltage 75% max. of rated voltage (V)	

$\begin{array}{l}\text { Power consumption } \\ (\mathrm{mW})\end{array}$	Approx. 100 mW

Note: 1. The rated current and coil resistance are measured a
a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The operating characteristics are measured at a coil
temperature of $23^{\circ} \mathrm{C}$. temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can
be imposed on the Relay coil instantaneously.

- Characteristics

Item		Single-side stable models		Single-winding latching models
			G6KU-2F-RF	G6KU-2F-RF
Contact resistance (See note 2.)		100 m . max.		
Operating (set) time (See note 3.)		3 ms max. (approx. 1.4 ms)		3 ms max. (approx. 1.2 ms)
Release (reset) time (See note 3.)		$3 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.3 ms)		$3 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.2 ms)
Minimum setreset pulse time		--		10 ms
Insulation resistance (See note 4.)		$1,000 \mathrm{M} \Omega$ min. (at 500 VDC$)$		
Dielectric strength	Between coil and contacts	$750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Between contacts of different polarity	$750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Between contacts of the same polarity	$750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Between ground and coilcontacts	$500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
Vibration resistance				
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $750 \mathrm{~m} / \mathrm{s}^{2}$		
Endurance		Mechanical: $50,000,000$ operations min. (at a switching frequency of 36,000 operations/hour) Electrical: 100,000 operations min. (at a switching frequency of 1,800 operations/hour)		
Ambient temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity		Operating: 5\% to 85\%		
Weight		Approx. 0.95 g		

Note: 1. The above values are initial values.

2. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
3. Values in parentheses are actual values.
4. The insulation resistance was measured with a 500 -VDC megohmmeter applied to the same parts as those used for checking the dielectric
strength.

Surface-mounting High-frequency Relay - G6K(U)-2F-RF OmROn
Engineering Data

High-frequency
Characteristics (Isolation)

High-frequency Characteristics (Insertion Loss)

High-frequency
Characteristics (Return Loss, V.SWR)

Note: Refer to the G6K specifications for basic specifications not shown above.
Dimensions
Note: All units are in millimeters unless otherwise indicated

Recommended Soldering Method

Recommended Conditions for IRS Method

 (Surface-mounting Terminals)

Note: The temperature profile indicates the temperature on the circuit board surface.
The thickness of cream solder to be applied should be between 200 and $250 \mu \mathrm{~m}$ and the land pattern should be based on
To maintain the correct soldering joint shown in the following diagram, we recommend applying solder with the soldering conditions shown on the left

Check the soldering in the actual mounting conditions before use.

Safety Precautions

- Precautions for Correct Use

Handling
Remove the Relay from its packaging just before installation
Environmental Conditions for Usage, Storage, and Transport
Avoid direct sunlight when using, storing, or transporting the Relay and
conditions.

Long-term, Continuous ON Contacts
Using the Relay in a circuit where the Relay will be ON continuUsing the Relay in a circuit where the Relay will be ON continu-
ously for long periods (rather than switching) can lead to unstable ously for long periods (rather than switching) can lead to unstable
contacts because the heat generated by the coil itself will affect the insulation and can cause a film to develop on the contact surfaces. We recommend using a latching relay (magnetic-holding used in this kind of circuit, we recommend adding fail-safe circuits in case the contact fails or the coil burns out.

Claw Securing Force During Automatic

 MountingDuring automatic insertion of Relays, be sure to set the securing force of each claw to the following so that the Relay's characteris tics will be maintained.

Coating

Do not use silicone coating to coat the Relay when it is mounted to the PCB. Do not wash the PCB after the Relay is mounted using detergent containing silicone. Otherwise, the detergent may

Surface-mounting, 2.6-GHz-Band

Miniature, SPDT, High-frequency

Relay

■ Superior high-frequency characteristics, such as an isolation of 30 dB min., insertion loss of 0.5 dB max., and V.SWR of 1.5 max. a 2.6 GHz.

- Surface-mounting terminals and superior high frequency characteristics combined using semi triplate strip transmission lines.
■ Miniature dimensions of $20 \times 8.6 \times 8.9 \mathrm{~mm}$ (L x W x H).
- Choose from a lineup that includes single-winding latching models (200 mW), double-winding latching models (360 mW), and models with a reverse contact arrangement.
- Series includes models with an E-shape terminal structure (same as existing models), and models with a Y-shape terminal structure, allowing greater freedom with PCB design.
- Models with 75- Ω impedance and models with $50-\Omega$ impedance are available.

Ordering Information

Model Number Legend
G6Z- $\square-\frac{\square}{2} \frac{\square}{3} \frac{\square}{4}-\square \square$

1. Relay Function

None: Single-side stable
$\begin{array}{ll}\text { U: } & \text { Single-winding latching } \\ \text { K: } & \text { Double-winding latching }\end{array}$
2. Contact Form

1: SPDT
3. Terminal Shape

F: Surface-mounting terminals
$\begin{array}{ll}\text { F: } & \text { Surface-mounting } \\ \text { P: } & \text { PCB terminals }\end{array}$
4. Terminal Structure

None: Y -shape terminal structure
E : E -shape terminal structure
5. Characteristic Impedance

$$
\begin{aligned}
& \text { None: } 75 \Omega \\
& \text { A: } \quad 50 \Omega
\end{aligned}
$$

6. Contact Arrangement

None: Standard contact arrangement
R: Reverse contact arrangement

[^4]Surface-mounting High-frequency Relay - G6Z

- List of Models

Standard Models with PCB Terminals

$\begin{aligned} & \text { Classifi- } \\ & \text { cation } \end{aligned}$	Structure	Contact form	Terminal arrangement	Characteristic impedance	Rated coil voltage	Model
Singleside stable	Plastic sealed	SPDT	E-shape	75Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6Z-1PE
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6Z-1PE-A
			Y-shape	75Ω	$3,4.5,5,9,12$, and 24 VDC	G6Z-1P
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6Z-1P-A
Singlewinding latching			E-shape	75Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZU-1PE
				50Ω	$3,4.5,5,9,12$, and 24 VDC	G6ZU-1PE-A
			Y-shape	75Ω	$3,4.5,5,9,12$, and 24 VDC	G6ZU-1P
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZU-1P-A
Doublewinding latching			E-shape	75Ω	$3,4.5,5,9,12$, and 24 VDC	G6ZK-1PE
				50Ω	$3,4.5,5,9,12$, and 24 VDC	G6ZK-1PE-A
			Y-shape	75Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZK-1P
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZK-1P-A

Standard Models with Surface-mounting Terminals

Classification	Structure	Contact form	$\begin{aligned} & \hline \begin{array}{l} \text { Terminal } \\ \text { arrange- } \\ \text { ment } \end{array} \end{aligned}$	Characteristic impedance	Rated coil voltage	Model
Singleside stable	Plastic sealed	SPDT	E-shape	75Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6Z-1FE
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6Z-1FE-A
			Y-shape	75Ω	$3,4.5,5,9,12$, and 24 VDC	G6Z-1F
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6Z-1F-A
Singlewinding latching			E-shape	75Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZU-1FE
				50Ω	$3,4.5,5,9,12$, and 24 VDC	G6ZU-1FE-A
			Y-shape	75Ω	$3,4.5,5,9,12$, and 24 VDC	G6ZU-1F
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZU-1F-A
Doublewinding latching			E-shape	75Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZK-1FE
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZK-1FE-A
			Y-shape	75Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZK-1F
				50Ω	3, 4.5, 5, 9, 12, and 24 VDC	G6ZK-1F-A

Note: When ordering tape packing (surface-mounting models), add "-TR" to the model number. "-TR" does not appear on the Relay itself.
Application Examples
These Relays can be used for switching signals in media equipment.

- Wire communications:

Cable TV (STB and broadcasting infrastructure), cable modems, and VRS (video response systems)

- Wireless communications:

Transceivers, ham radios, car telephones, ETC, ITS, high-level TV, satellite broadcasting, text multiplex broadcasting, pay TV, mobile phone stations, TV broadcasting facilities, and community antenna systems

- Public equipment:
- Industrial equipment:

Measuring equipment, test equipment, and multiplex transmission devices

Surface-mounting High-frequency Relay - G6Z
OmROn
Specifications

- Contact Ratings

Load	Resistive load
Rated load	10 mA at $30 \mathrm{VAC} ; 10 \mathrm{~mA}$ at $30 \mathrm{VDC} ; 10 \mathrm{~W}$ at 900 MHz (See note.)
Rated carry current	0.5 A
Max. switching voltage	$30 \mathrm{VAC}, 30 \mathrm{VDC}$
Max. switching current	0.5 A

Note: This value is for an impedance of 50Ω or 75Ω with a V.SWR of 1.2 max.

- High-frequency Characteristics

Item Frequency		900 MHz				2.6 GHz				
		TH		SMD		TH		SMD		
		E-shape	Y-shape	E-shape	Y-shape	E-shape	Y-shape	E-shape	Y-shape	
Isolation	75Ω	65 dB min.		60 dB min.		35 dB min.	45 dB min.	30 dB min.	40 dB min.	
	50Ω	60 dB min								
Insertion loss (not including substrate loss)	75Ω	0.2 dB max.				0.5 dB max.				
	50Ω	0.1 dB max				0.3 dB max				
V.SWR	75Ω	1.2 max.				1.5 max.				
	50Ω	1.1 max.				1.3 max.				
Return loss	75Ω	20.8 dB m				14.0 dB max				
	50Ω	26.4 dB m				17.7 dB max.				
Maximum carry power Maximum switching power		10 W (See note 2.)								

Note: 1. The above values are initial values.
2. These values are for an impedance of 50Ω or 75Ω with a V.SWR of 1.2 max

Surface-mounting High-frequency Relay - G6Z
OmROn

- Coil Ratings

Single-side Stable Models
G6Z-1P(E), G6Z-1F(E)

Raged voltage	3 VDC	4.5 VDC	5 VDC	9 VDC	12 VDC	24 VDC
Rated current	66.7 mA	44.4 mA	40.0 mA	22.2 mA	16.7 mA	8.3 mA
Coil resistance	45Ω	101Ω	125Ω	405Ω	720Ω	$2,880 \Omega$
Must operate voltage	75% max. of rated voltage					
Must release voltage	10% min. of rated voltage					
Maximum voltage	150% of rated voltage					
Power consumption	Approx. 200 mW					

Single-winding Latching Models
G6ZU-1P(E), G6ZU-1F(E)

Raged voltage	3 VDC	4.5 VDC	5 VDC	9 VDC	12 VDC	24 VDC
Rated current	66.7 mA	44.4 mA	40.0 mA	22.2 mA	16.7 mA	8.3 mA
Coil resistance	45Ω	101Ω	125Ω	405Ω	720Ω	2.880Ω
Must operate voltage	75% max. of rated voltage					
Must release voltage	75% max. of rated voltage					
Maximum voltage	150% of rated voltage					
Power consumption	Approx. 200 mW					

Double-winding Latching Models
G6ZK-1P(E), G6ZK-1F(E)

Raged voltage	3 VDC	4.5 VDC	5 VDC	9 VDC	12 VDC	24 VDC
Rated current	120 mA	80 mA	72 mA	40 mA	30 mA	15 mA
Coil resistance	25Ω	56Ω	69Ω	225Ω	400Ω	1,600 Ω
Must operate voltage	75% max. of rated voltage					
Must release voltage	75\% max. of rated voltage					
Maximum voltage	150\% of rated voltage					
Power consumption	Approx. 360 mW					

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$,
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

Surface-mounting High-frequency Relay - G6Z
OmROn

- Characteristics

Item		Single-side stable models	Single-winding latching models	Double-winding latching models
		G6Z-1P(E), G6Z-1F(E)	G6ZU-1P(E), G6ZU-1F(E)	G6ZK-1P(E), G6ZK-1F(E)
Contact resistance (See note 2.)		$100 \mathrm{~m} \Omega$ max.		
Operating (set) time (See note 3.)		10 ms max. (approx. 3.5 ms) 10 ms max. (approx. 2.5 ms)		
Release (reset) time (See note 3.)		10 ms max. (approx. 2.5 ms)		
Minimum set/reset pulse time		--- 12 ms		
Insulation resistance (See note 4.)		$100 \mathrm{M} \Omega$ min. (at 500 VDC)		
Dielectric strength	Coil and contacts	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Coil and ground, contacts and ground	$500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Contacts of same polarity	$500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
Vibration resistance		Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude) Malfunction:10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)		
Shock resistance		Destruction:1,000 m/s ${ }^{2}$ Malfunction: $500 \mathrm{~m} / \mathrm{s}^{2}$		
Endurance		Mechanical: $1,000,000$ operations min. (at 36,000 operations/hour) Electrical: $\quad 300,000$ operations min . ($30 \mathrm{VAC}, 10 \mathrm{~mA} / 30 \mathrm{VDC}, 10 \mathrm{~mA}$), 100,000 operations $\mathrm{min} .(900 \mathrm{MHz}, 10 \mathrm{~W})$ at a switching frequency of 1,800 operations/hour		
Ambient temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity		Operating: 5\% to 85\%		
Weight		$\text { Approx. } 2.8 \mathrm{~g}$		

Note: 1. The above values are initial values.
2. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
3. Values in parentheses are actual values.
4. The insulation resistance was measured with a 500 -VDC megohmmeter applied to the same parts as those used for checking the dielectric strength.

Engineering Data

Ambient Temperature vs. Must
pperate or Must Release Voltage

Shock Malfunction

Condtions: Shock is applied in $\pm X, \pm Y$, and $+Z$ directions three times each with and
without tenergizing the Relays to check
 Electrical Endurance (with Must
Operate and Must Release Voltage)

Electrical Endurance
(Contact Resistance)

Surface-mounting High-frequency Relay - G6Z

omROn

High-frequency C
(Insertion Loss)

$\underset{\text { (Isolation) }}{\text { High-freque }}$

 High-frequency
(Insertion Loss)

High-frequency Characteristics at 50Ω (Return Loss, V.SWR)

Note: The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.

Dimensions
Note: All units are in millimeters unless otherwise indicated.

- Models with PCB Terminals

G6Z-1PE
G6ZU-1PE
G6Z-1PE-R

Mounting Dimensions (Bottom View) Tolerance: $\pm 0.1 \mathrm{~mm}$

7.62 TTree 1.6 -dia

1000006
254--7.
Trree 0.8.da noles
Terminal Arrangement/Internal
Connections Connections (Bottom View)

Surface-mounting High-frequency Relay - G6Z
OmROn

$\underset{\text { G6ZU-1P }}{\text { G6Z-1P }}$

Mounting Dimensions (Bottom View) Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/Internal Connections (Bottom View)
 $\underset{\text { G6ZU-1P-A }}{\text { G6Z-1P-A }}$

G6ZK-1PE

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

e: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Mounting Dimensions (Bottom View)
Terminal Arrangement/Internal Connections (Bottom View)

G6ZK-1P-A

Mounting Dimensions (Bottom View)
Terminal Arrangement/Internal

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Surface-mounting High-frequency Relay - G6Z
OmROn

- Models with Surface-mounting Terminals
Mounting Dimensions (Top View)
Tolerance: $\pm 0.1 \mathrm{~mm}$ Tolerance: $\pm 0.1 \mathrm{~mm}$

G6ZU-1FE

Mounting Dimensions (Top View)
G6Z-1FE-A G6Z-1FE-A
G6ZU-1FE-A

Terminal Arrangement/Internal Connections (Top View

Terminal Arrangement/Internal Terminal Arrangement/ll
Connections (Top View)

Terminal Arrangement/Internal
Connections (Top View) Connections (Top View)

Terminal Arrangement/Internal Connections (Top View)

Terminal Arrangement/Internal Connections (Top View)

Terminal Arrangement/IIterna Connections (Top View)

Surface-mounting High-frequency Relay - G6Z

omron

Terminal Arrangement/Internal Connections (Top View)

Stick Packing and Tape Packing

Stick Packing

Relays in stick packing are arranged so that the orientation mark of each Relay in on the left side.
Be sure not to make mistakes in Relay orientation when mounting
the Relay to the PCB.

Stick length: 530 mm (stopper not included)
Tape Packing (Surface-mounting Terminal
Models) Models) When ordering Relays in tape packing, add the prefix "-TR" to the
model number, otherwise the Relays in stick packing will be pro-
vided. vided.
Relays per Reel: 300
Direction of Relay Insertion

Reel Dimensions

Carrier Tape Dimensions

Note: The radius of the unmarked corner is 0.3 mm .

Recommended Soldering Method

Temperature Conditions for IRS Method

 When using reflow soldering, ensure that the Relay terminals andthe top of the case stay below the following curve Check that the top of the case stay below the following curve. Check that nals.

Measured part	Preheating $(\mathrm{T} 1 \rightarrow \mathrm{~T}, \mathbf{t 1})$	Soldering $(\mathrm{T} 3, \mathrm{t} 2)$	Maximum peak $(\mathrm{T} 4)$
Terminals	$150 \rightarrow 180^{\circ} \mathrm{C}$, 120 s max.	$230^{\circ} \mathrm{C}$ min, 30 s max..	$250^{\circ} \mathrm{C}$ max.
Top of case	--	-	$255^{\circ} \mathrm{C}$ max.

Do not quench the terminals after mounting. Clean the Relay using alcohol or water no hotter than $40^{\circ} \mathrm{C}$ max.
The thickness of cream solder to be applied should be between 150 and $200 \mu \mathrm{~m}$ on OMRON's recommended PCB pattern.

Check the soldering in the actual mounting conditions before use.

Surface-mounting High-frequency Relay - G6Z
OmROn

Safety Precautions

- Precautions for Correct Use

Please observe the following precautions to prevent failure to effect on product perfor

High-frequency Characteristics Measurement Method and Measurement Substrate
High-frequency characteristics for the G 6 Z are measured in the
way shown below. Consult your OMRON representative for way shown below. Consult your OMRON representative for details on $50-\Omega$ models.
Measurement Method for 75- Ω Models

Through-hole Substrate ($75-\Omega$ Models, E-shape or Y -shape)

SMD-type Substrate ($75-\Omega$ Models, E -shape or Y -shape)

Substrate for High-frequency Characteristic Compensation ($75-\Omega$ Models, E -shape or Y -shape)

Substrate Types
Material: FR-4 glass epoxy (glass cloth impregnated with epoxy resin and copper laminated to its outer surface)
Thickness: 1.6 mm
Thickness of copper plating: $18 \mu \mathrm{~m}$
Note: 1. The compensation substrate is used when measuring the Relay's insertion loss. The insertion loss is ob-
tained by subtracting the measured value for the compensation substrate from the measured value with the Relay mounted to the high-frequency measurement substrate
2. For convenience, the diagrams of the high-frequency measurement substrates given here apply both to
models with an E -shape terminal structure and to models with a Y-shape terminal structure.
3. Be sure to mount a standoff tightly to the through-hole substrate.
4. Use measuring devices, connectors, and substrates that are appropriate for 50Ω and 75Ω respectively. 5. Ensure that there is no pattern under the Relay. Other-
wise, the impedance may be adversely affected and the Relay may not be able to attain its full characteristics.

Handling

Do not use the Relay if it has been dropped. Dropping the Relay may adversely affect its functionality.
Protect the Relay from direct sunlight and keep the Relay under normal temperature, humidity, and pressure.

Flow Soldering

Solder: JIS Z3282, H63A
Soldering temperature: Approx. $250^{\circ} \mathrm{C}\left(260^{\circ} \mathrm{C}\right.$ if the DWS method
is is used)
Soldering time: Approx. 5 s max. (approx. 2 s for the first time and approx. 3 s for the second time if the DWS method is used)
Be sure to make a molten solder level adjustment so that the solder will not overflow on the PCB.

Claw Securing Force During Automatic
 Mounting

During automatic insertion of Relays, be sure to set the securing force of each claw to the following so that the Relay's characteristics will be maintained.

Secure the caws to the shaded araem
Do oot attach trem to to me conterate

Latching Relay Mounting

Make sure that the vibration or shock that is generated from other devices, such as Relays, on the same panel or substrate and imposed on the Latching Relay does not exceed the rated value, changed. The Latching Relay is reset before shipping. If excessive vibration or shock is imposed, however, the Latching Relay may be set accidentally. Be sure to apply a reset signal before use.

Coating

Do not use silicone coating to coat the Relay when it is mounted to the PCB. Do not wash the PCB after the Relay is mounted using detergent containing silicone. Otherwise, the detergent may remain on the surface of the Relay

Surface-Mountable 2.5GHz Band

Miniature SPDT High-frequency

Relay

- Superior high-frequency characteristics, such as an isolation of 60 dB min., insertion loss of 0.2 dB max., and V.S.W.R. of 1.2 max at $2.5 \mathrm{GHz}(50 \Omega)$.
■ Surface-mounting terminals and superio high-frequency characteristics combined through adoption of tri-plate micro strip type transmission lines.

Ultra-miniature at $20 \times 9.4 \times 8.9 \mathrm{~mm}$ ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$).

- Serialised relay lineup consisting of single-winding latching type (200 mW), double-winding latching type (360 mW), and reverse-arrangement contact type.
\square Y-shape terminal arrangement that simplifies wiring to PCBs.

Ordering Information

Classification			Single-side stable	Single-winding latching	Double-winding latching
SPDT	Fully Sealed	Through-hole terminal	Y-shape terminal	G6W-1P	G6WU-1P
		Surface-mounting terminal	Y-shape terminal	G6W-1F	G6WU-1F

Note: When ordering, add the rated coil voltage to the model number.
Example: G6W-1P 12 VDC
Model Number Legend
G6W ㅁ-ㅁㅁ믐

1. Relay Function

None: Single-side stable
U: Single-winding latching
K: Double-winding latching
2. Contact Form

2: SPDT
3. Terminal Shape

F: Surface-mounting terminals
P: PCB terminals
4. Terminal Arrangement None: Y -shape terminal arrangement (standard)

5. Classification

None: Standard contact arrangemen
R: Reverse contact arrangement

Application Examples

High-Frequency Signal Relay - G6W
OmROn
Specifications

Contact Ratings

Item	Load
Rated load	10 mA at 30 VAC
	10 mA at 30 VDC
	$2.5 \mathrm{GHz}, 50 \Omega, 10 \mathrm{~W}$ (See note 2.)
Rated carry current	0.5 A
Max. switching voltage	$30 \mathrm{VDC,30} \mathrm{VAC}$
Max. switching current	0.5 A

■ High-frequency Characteristics

Item \quad Frequency	$\mathbf{2 . 0} \mathbf{~ G H z}$	$\mathbf{2 . 5} \mathbf{~ G H z}$
Isolation	65 dB min.	60 dB min.
Insertion loss	0.2 dB max.	
V.SWR	1.2 max .	
Max. carry power	20 W (See note 2.)	
Max. switching power	10 W (See note 2.)	

Max. switching power 10 W (See note 2.)
Note: 1. The above values are initial values.
2. This values is for a load with $\mathrm{V} . \mathrm{SWR} \leq 1.2$ at the
impedance of 50Ω.

- Coil Ratings

Single-side Stable Relays (G6W-1F, G6W-1P)

Rated voltage	3 VDC	4.5 VDC	9 VDC	12 VDC	24 VDC
Rated current	66.7 mA	44.4 mA	22.2 mA	16.7 mA	8.3 mA
Coil resistance	45Ω	101Ω	405Ω	720Ω	$2,880 \Omega$
Must operate voltage	80% max. of rated voltage				
Must release voltage	10% min. of rated voltage				
Max. voltage	150% of rated voltage				
Power consumption	Approx. 200 mW				

Single-winding Latching Relays (G6WU-1F, G6WU-1P)

Rated voltage	9 VDC	12 VDC
Rated current	22.2 mA	16.7 mA
Coil resistance	405Ω	720Ω
Must operate voltage	80% max. of rated voltage	
Must reset voltage	80% max. of rated voltage	
Max. voltage	150% of rated voltage	
Power consumption	Approx. 200 mW	

Double-winding Latching Relays (G6WK-1F, G6WK-1P)

Rated voltage	3 VDC	4.5 VDC	9 VDC	12 VDC	24 VDC
Rated current	120 mA	80 mA	40 mA	30 mA	15 mA
Coil resistance	25Ω	56Ω	225Ω	400Ω	$1,600 \Omega$
Must set voltage	80% max. of rated voltage				
Must reset voltage	80% max. of rated voltage				
Max. voltage	150% of rated voltage				
Power consumption	Approx. 360 mW				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$,
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil.

High-Frequency Signal Relay - G6W
OmROn

■ Characteristics

Classification		Single-side Stable	Single-winding Latching	Double-winding Latching
Model		G6W-1F, G6W-1P	G6WU-1F, G6WU-1P	G6WK-1F, G6WK-1P
Contact resistance (See note 1.)		$100 \mathrm{~m} \Omega$ max.		
Operate (set) time (See note 2.)		$10 \mathrm{~ms} \mathrm{max}$. (Approx. 3.5 ms)	$10 \mathrm{~ms} \mathrm{max}$. (Approx. 2.5 ms)	
Release (reset) time (See note 2.)		$10 \mathrm{~ms} \mathrm{max}$. (Approx. 2.5 ms)		
Minimum set/reset signal width		-	12 ms	
Insulation resistance (See note 3.)		$100 \mathrm{M} \Omega$ min. (at 500 VDC$)$		
Dielectric strength	Coil and contacts	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Coil and ground, contacts and ground	$500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
	Contacts of same polarity	$500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
Vibration resistance	Destruction	10 to 55 Hz , 2-mm double amplitude		
	Malfunction	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude		
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction	$500 \mathrm{~m} / \mathrm{s}^{2}$		
Endurance	Mechanical	1,000,000 operations min. (at 36,000 operations/hour)		
	Electrical	300,000 operations min. (30 VAC $10 \mathrm{~mA} / 30 \mathrm{VDC} 10 \mathrm{~mA}$), 100,000 operations min. ($2.5 \mathrm{GHz}, 50 \Omega, 10 \mathrm{~W}$)		
Ambient temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity		Operating: 5\% to 85\%		
Weight		Approx. 3 g		

Note: 1. The contact resistance was measured with 10 mA at 1 VDC with a fall-of-potential method
2. Values in parentheses are actual values.
3. The insulation resistance was measured with a 500-VDC Megger Tester applied to the same parts as those used for checking the dielectric strength.
4. The above values are initial values.

Engineering Data

Ambient Temperature vs. Maximum Voltage

Note: "Maximum voltage" is the maximum
voltage that can be applied to the Relay voltage
coil.

Ambient Temperature vs. Must Set or Must Reset Voltage

Shock Malfunction

Conditions: Shock is applied in $\pm \mathrm{X}, \pm \mathrm{Y}$, and $\pm \mathrm{Z}$ energizing the Relays to check the number of energizing the Relays
contact malfunctions.

With Must Set and Must Reset
Voltage)

Electrical Endurance
(Contact Resistance)

External Magnetic Interference

High-Frequency Signal Relay - G6W

High-frequency Characteristics
(Insertion (Insertion Loss)

High-frequency Characteristic (Return Loss)

Must Set and Must Reset Bounce Time Distribution (See note.)

Dimensions
Note: All units are in millimeters unless otherwise indicated.

Must Set and Must Reset Time

High-Frequency Signal Relay - G6W

Recommended Soldering Method

temperature profile according to irs method

- When performing reflow-soldering, check the profile on an actual device after setting the temperature condition so that the temperatures at the relay terminals and the upper surface of the case do not exceed the limits specified in the following table.

Item			
Measuring position	Preheating $\left(\mathrm{T} 1\right.$ to $\left.\mathrm{T} 2, \mathrm{t}_{1}\right)$	Soldering $\left(\mathrm{T} 3, \mathrm{t}_{2}\right)$	Peak value $(\mathrm{T} 4)$
Terminal	$150^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$, 120 s max.	$230^{\circ} \mathrm{C}$ min., 30 s max.	$250^{\circ} \mathrm{C}$ max.
Upper surface of case	-	-	$255^{\circ} \mathrm{C}$ max.

Precautions
correct use
High-frequency Characteristics Measurement Method and Substrate to be Measured
High-frequency Characteristics for G6W are measured as shown below.

-

- The thickness of cream solder to be applied should be within a range between 150 and 200 mm on OMRON's recommended PCB pattern.

Visually check that the Relay is properly soldered
BOTTOM GROUND SOLDERING CONDITIONS
Soldering iron: 50 W
Iron temperature: $380^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$
Soldering time: 10 s max.
Note: The above conditions are given for reference only; it is recommended to double-check the suitability under actua conditions.

Through-hole substrate
Substrate: t-0.8 BT resin (Dielectric constant at 2 GHz: 3.37)

Undersurface of relay

SMD-type substrate
Substrate: t-0.8 BT resin (Dielectric constant at $2 \mathrm{GHz}: 3.3$

Note: To obtain high-frequency characteristics close to the charts shown on page? solder the convex point on the undersurface of the relay to the ground pattern of the substrate.
Base plate for high-frequency characteristic compensation

Note: The above compensation plate is used to measure the loss by the relay
The relay loss is determined by subtracting the data measured for a compensation base pubtracting the data a high-frequency characteristics measuring substrate mounted with a relay

Handin

Leave the Relays packed until just prior to mounting them. Dropping the relay may cause damage to its functional capability. Never use the relay if it is dropped
Protect the relays from direct sunlight during operation, storage, and transportation and keep the relays under normal temperature, humidity, and pressure.

Soldering

Solder: JIS Z3282, H63A
Soldering temperature: Approx. $250^{\circ} \mathrm{C}$ (At $260^{\circ} \mathrm{C}$ if the DWS method is used.)
Soldering time: Approx. 5 s max. (approx. 2 s for the first time and approx. 3 s for the second time if the DWS method is used.) Be sure to adjust the level of the molten solder so that the solder will not overflow onto the PCB.
Claw Securing Force During Automatic Insertion
During automatic insertion of Relays, make sure to set the securing force of the claws to the following values so that the Relay characteristics will be maintained.

Direction A: 4.90 Nmax Direction B: 9.80 Nmax Direction C: 9.80 Nmax

Secure the claws to the area indicated by shading Do not attach them to the center area or to only part of the Relay.
Latching Relay Mounting
Make sure that the vibration or shock that is generated from other Make sure that the vibration or shock that is generated from other
devices, such as relays in operation, on the same panel and devices, such as relays in operation, on the same panel and
imposed on the Latching Relay does not exceed the rated value, otherwise the Latching Relay that has been set may be reset or vice versa. The Latching Relay is reset before shipping. If excessive vibration or shock is imposed, however, the Latching Relay may be set accidentally. Be sure to apply a reset signal Coating
Relays mounted on PCBs may be coated or washed. Do not apply silicone coating or detergent containing silicone, otherwise the silicone coating or detergent may remain on the surface of the Relays.

Classification	Ultra-Miniature PCB Relay			
Model	G8N1	G8ND2	G8NW	
Features	Fully sealed construction Fully automated assembly 25A motor lock load	Twin automotive relay suitalle for polarity reversal control		

[^0]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527 .

[^1]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^2]: Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
 2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$

[^3]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^4]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

