OmROn

Components Catalogue

Contents		OInROn
	G3VM-3(F)L	387-388
	G3VM-353B/E	389-390
	G3VM-401B/E	391-392
	G3VM-4N(F)	393-395
	G3VM-401BY/EY	396-397
	G3VM-601BY/EY	398-399
	G3VM-61H1	400-401
	G3VM-201H1	402-403
	G3VM-351H	404-405
	G3VM-353H	406-407
	G3VM-401H	408-409
	G3VM-62C1/F1	410-411
	G3VM-352C/F	412-413
	G3VM-W(F)L	414-415
	G3VM-354C/F	416-417
	G3VM-355C/F	418-419
	G3VM-402C/F	420-421
	G3VM-62J1	422-423
	G3VM-202J1	424-425
	G3VM-352J	426-427
	G3VM-354J	428-429
	G3VM-355J	430-431
	G3VM-402J	432-433
	GENERAL PURPOSE RELAYS	434-508
	Technical Information	434-439
	Selection Guide	440-442
	MY	443-455
	LY	456-468
	G2RS	469-478
	G7L	479-493
	G7J	494-502
	G7SA	503-508
7	MICROSWITCHES	509-659
	Technical Information	509-520
	Selection Guide	521-530
	D3V	531-544
	V	545-560
	VX	561-567
	SS	568-575

Contents

GENERAL PURPOSE RELAYS	$434-508$
Technical Information	$434-439$
Selection Guide	$440-442$
MY	$443-455$
LY	$456-468$
G2RS	$469-478$
G7L	$479-493$
G7J	$494-502$

SS-P	$576-581$
SSG	$582-589$
D2F	$590-595$
D2MQ	$596-600$
D3C	$601-604$
D2X	$605-608$
D3K	$609-612$
D3M	$613-618$
D2SW	$619-624$
D2VW	$625-630$
D2JW	$631-635$
D2HW	$636-644$
D2MC	$645-649$
D2D	$650-657$
D3D	$658-661$

DIP SWITCHES	$662-690$
Technical Information	$662-664$
Selection Guide	$665-668$
A6H	$669-670$
A6T/A6S	$671-673$
A6D/A6DR	$674-676$
A6E/A6ER	$677-679$
A6A	$680-683$
A6C/A6CV	$684-686$
A6R/A6RV	$687-690$

TACTILE SWITCHES	$691-731$
Techinical Information	$691-693$
Selection Guide	$694-698$
B3F	$699-707$
B3W	$708-711$
B3FS	$712-714$
B3SN	$715-716$
B3S	$717-718$
B3WN	$719-720$
B3J	$721-723$
B3DA	$724-725$
B3D	$726-729$
B32	$730-731$

OmROn

PHOTOMICROSENSORS	732-914
Technical Information	732-736
Selection Guide	737-738
EE-SX1107	739-743
EE-SX1018	744-746
EE-SX1108	747-751
EE-SX1131	752-756
EE-SX1139	757-759
EE-SX4139	760-762
EE-SX493	763-765
EE-SX1055	766-768
EE-SX1046	769-771
EE-SX1082	772-774
EE-SX1106	775-777
EE-SX1109	778-782
EE-SX199	783-785
EE-SX398/498	786-788
EE-SV3	789-791
EE-SX1071	792-794
EE-SX1088	795-797
EE-SH3	798-800
EE-SJ3	801-803
EE-SX3088/4088	804-806
EE-SG3	807-809
EE-SX1128	810-812
EE-SX1041	813-815
EE-SX1042	816-818
EE-SX1081	819-821
EE-SX1235A-P2	822-824
EE-SX4009-P1	825-827
EE-SX4019-P2	828-830
EE-SX3081/4081	831-833
EE-SX4009-P10	834-836
EE-SX4235A-P2	837-839
EE-SX1070	840-842
EE-SX3070/4070	843-845
EE-SPX415-P2	846-848
EE-SX461-P11	849-852
EE-SX414-P1	853-855
EE-SA102	856-858
EE-SA103	859-861

Welcome to the Omron Components Catalogue

Omron Components is a world-class business delivering a wide range of high quality, high performance components utilising latest technologies and backed by full technical, applications and logistical support.

We offer the widest range of relays for power, signal and automotive applications as well as solid-state and MOSFET relays. Our G3VM MOSFETS combine
 the advantages of mechanical and solid-state technologies allowing design flexibility with either AC or DC load able to be connected in either direction. We are also developing our range of microsensors, and currently offer photomicrosensors and a new range of D8M-D8 micro pressure-sensors which meet stringent safety standards such as working reliably with low pressure, metal casing and flange fitting. Our broad range of switches includes micro, DIP, and tactile options, and you will find a wide selection of connectors to meet
 industry-standard data interconnect, power transmission and signalling. Omron Double Reflection LEDs feature built-in optical light guide technology that more than doubles effective light output compared with conventional bullet-type LEDs.

Environmental research and experience enabled us to formulate a policy to remove recognised hazardous substances from our products well within the timescales of European Directives. We have identified suitable alternative materials and agreed the changes we need to make to our
 production processes in order to maintain quality levels. All of our manufacturing sites have achieved ISO14001 certification for the management of environmental protection in our organisation.

Using our website alongside this catalogue, you can be kept fully up-to-date with our range of products, technical capabilities and environmental policy.
www.eu.omron.com/ocb

Omron Electronic Components Europe B.V. reserves the right to
make any changes to the specifications, technical information make any changes to the specifications, technical information
and data of the components described in this catalogue at its sole discretion without prior notice

Although we do strive for perfection, Omron Electronic Components Europe B.V. does not warrant or make any specifications, technical information and data of the components as described in this catalogue.

■ Relay Classification

Model	Mounting	Enclosure Ratings	Features
G4W	Discrete	Unsealed	Designed for manual soldering
G2R		Flux protection	Design inhibits flux intrusion into the casing fro the terminals during soldering.
		Fully sealed	Sealed resin casings and covers, limiting damage from corrosive atmospheres.
	Surface mounting		Surface mounting relays permit automatic reflow soldering.

- Construction

sealing

Unsealed Relays

Relays of this type are intended for manual soldering. No measures are taken against penetration of flux and cleaning solvent into the relay. This type of relay cannot be immersion-

Flux-protection Relays
Special design construction prevents flux from penetrating into the relay housing, for example, due to capillary action up the terminals when the relay is soldered onto a PCB. This type of relay also cannot be immersion-cleaned.

Fully Sealed Relays

Fully sealing prevents not only flux, but also cleaning solvent from penetrating into the relay housing. Therefore, this type of relay can be immersion-cleaned Relays are each tested before being shipped. The relay is immersed in fluorocarbon solution for 1 minute, at a temperature of $70^{\circ} \mathrm{C}+5^{\circ} \mathrm{C} /-0^{\circ} \mathrm{C}$, to see if gases escape
from the relay. The following figure illustrates the test conditions.

Fluorocarbon
solution

Flux protection	
Terminals are pressed into base.	Terminals are inserted into base 0.3 mm min . thick.
Good	Good
Good	Good
Poor	Poor
Good	Good
Fair	
Poor	

Technical Information - Relays
OmROn

Classification	Fully Sealed	
Construction		
Features	Terminals are separated from PCB surface when relay is mounted.	Terminal and base, as well as the base and casing, are sealed with adhesive; the L-shaped terminals and adhesive pads allow temporary fixing to the board.
Automatic flux application	Good	Good
Automatic soldering	Good	Good
Automatic cleaning	Good	Good
Manual soldering	Good	Good
Penetration of dust	Good	Good
Penerration of corrosive gas	Good	Good

- Operation

SINGLE-SIDE STABLE RELAYS (STANDARD)
The contacts of this simple type of relay momentarily turn ON and OFF, depending on the excitement state of the coil.

Terminal Arrangement Internal Connections

(Bottom View)

DOUBLE-WINDING, LATCHING RELAYS
This latching relay has two coils: set and reset. It can retain the ON or OFF states even when a pulsating voltage is supplied, or when the voltage is removed.

Terminal Arrangement/
Internal Connections
(Bottom View)

SINGLE-WINDING, LATCHING RELAYS
Unlike the double-winding latching relay, the single-winding latching relay has only one coil. This coil, however, serves as both the set and reset coils, depending on the polarity (direction) of current flow. When current flows through the coil in the forward direction, it functions as a set coil; when current flows through the
coil in the reverse direction, it functions as a rese t

Terminal Arrangement
internal Connections

bUILT-IN DIODE
A diode is built into some relays, wired in parallel with the coil to absorb the counterelectromotive force (counter emf) generated by the coil
BUILT-IN OPERATION INDICATOR
Some relays are provided with a light-emitting diode (LED), wired in parallel with the coil. This permits a fast-check of the relay's operating status.

- Contacts

Contact ratings are generally indicated according to resistive loads and inductive loads (coso $=0.4$ or L/R $=7 \mathrm{~ms}$). Contact
shape and material are also shown to quide the customer in shape and material are also shown to guide the customer in
selection of a model suitable for the intended load and required selection of
service life.

When used at extremely low loads, the failure rate differs according to the contact material and contact method, as shown in the figure. For example, in comparing a single contact point with a bifurcated contact point, the bifurcated contact model has higher parallel redundancy and will therefore exhibit a lower failure rate.

Load current (mA)

■ Terminals

STRAIGHT PCB TERMINALS
PCB terminals are normally straight.
Self-clinching (S-shaped) PCB Terminals
Some relays have terminals that are bent into an " "S" shape. This secures the PCB relay to the PCB prior to soldering, helping the
terminals stay in their holes and keeping the relay level.

Plug-in Terminals

■ Dimensions

For miniature relays, the maximum dimensions and the average values () marked with an asterisk are provided to aid the customer in designing.

MOUNTING ORIENTATION MARK
On the top of all OMRON relays is a mark indicating where the relay coil is located. Knowing the coil location aids in designing CBs when spacing components. Also, pin orientation is easy to discern when automatic or hand-mounting relays.

Mark

On dimensional drawings in all OMRON literature this mark is leftoriented. Mounting holes, terminal arrangements, and internal
connections follow this alignment. The following two symbols are used to represent the orientation mark.

Drawing view	Bottom	Top
Detail	Mounting holes	Terminal arrangement/ internal connections
Symbol		\mathbb{Z}
Example		(Bottom view)

Moving Loop System

In the U.S.A., the National Association of Relay Manufactures advances in relay technology, as embodied in the Moving Loop System.
This unique relay construction maximizes electrical and permanent magnet energy. A high-efficiency magnet adds to the magnetic flux of the relay coil, which also allows for tighter packing of relay parts. Relays having such a coil are known as "polarized relays." Details of construction are shown below.

The moving loop design has similarities with polarized relays; however, the following two features make for a large performance distion.
A permanent magnet is placed in the vicinity of the "working gaps." The flux energy of this permanent magnet complements that of the electrical coil. This increased efficiency enables the mechanism holding the contacts closed to ultimately switch larger loads, and at the same time reduces the power consumed by the coil.

TERMINAL ARRANGEMENT/INTERNAL CONNECTIONS Top View
If the terminal arrangement of a relay can be seen from above the PCB, the top view of the relay is provided in the Dimensions section of the catalog or data sheet.

Bottom View
If the relay's terminals cannot be seen from above the PC board, as in this example, a bottom view is shown.

Rotation Direction to Bottom View

The bottom view shown in the catalog or data sheet is rotated in the direction indicated by the arrow, with the coil always on the left.

The following diagram shows concentric lines of magnetic flux when the permanent magnet is placed near the working gap.

CONVENTIONAL RELAY COIL
The following diagram shows the lines of magnetic flux when the permanent magnet is placed away from the working gap. These lines of flux detract from the total strength of the coil.

When the switching voltage is removed from the coil, the collapse of the magnetic flux created by the permanent magnet and the reset position. Note the flux path and magnet polarity in the illustration overleaf.

Super Moving Loop System
A very small high-sensitivity magnetic circuit is incorporated to further minimize the conventional moving loop system.

- Glossary

terms related to contacts

Carry Current

The value of the current which can be continuously applied to the relay contacts without opening or closing them, and which allows the relay to stay within the permissible temperature rise.
Maximum Switching Current
A current which serves as a reference in determining the performance of the relay contacts. This value will never exceed , When using a relay, do not exceed this value. Contact Form
OMRON uses the following relay terminology for the various polarity and switch configurations.
SPST-NO (Single-pole, single-throw, normally open)
SPST-NC (Single-pole, single-throw, normally close) SPDT (or changeover contact) (single-pole, double-throw) DPDT (Double-pole, double-throw) Contact Symbols

NO	NC	DT (NO/NC)	MBB
$\sqrt{4}$	$\sqrt{4}$	$\rightarrow \frac{\downarrow}{4}$	$\sqrt{4} \downarrow$

Make-before-break (MBB) Contac

A contact arrangement in which part of the switching section is shared between both an NO and NC contact. When the relay operates or releases, the contact that closes the circuit operates
before the contact that opens the circuit releases. Thus both contacts are closed momentarily at the same time.

This magnetic circuit has the following features

1. High-efficiency polarized magnetic circuit utilizes power of both attraction and repulsion
2. Balanced armature system improves resistance to both vibration and impacts.
mechanism for a low-profile relay.

| Release | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Note: The above applies to a latching relay

Contact Resistance
The total resistance of the conductor, as well as specific resistivities such as of the armature and terminal, and the resistance of the contacts. This value is determined by measuring
the voltage drop across the contacts by applying test currents as shown in the table below.

Test Current

Rated current or switching current	Test current (mA)
Less than 0.01	1
0.01 or higher but less than 0.1	10
0.1 or higher but less than 1	100
1 or higher	1,000

To measure the contact resistance, a milliohmmeter can also be used, although the accuracy drops slightly.

Maximum Switching Power

The maximum value of the load capacity which can be switched For example, when maximum switching voltage V_{1} is known maximum switching current I_{1} can be obtained at the point of intersection on the characteristic curve "Maximum Switching Power" shown below. Conversely, maximum switching voltage V_{1}
can be obtained if l_{1} is known.
Maximum switching current $\left(\mathrm{I}_{\mathrm{I}}\right)=\frac{\text { Max.s switching power }[\mathrm{W}(\mathrm{VA})]}{\text { Max.swiching voltage }(\mathrm{V} 1)}$
Maximum switching voltage $\left(V_{1}\right)=\frac{\text { Max.switching power [W } W \text { (VA)] }}{\text { Max.switching current (II) }}$
For instance, if the maximum switching voltage $=40 \mathrm{~V}$
Maximum switching current $=2 \mathrm{~A}$ (see circled point on graph
below.)
Maximum Switching Power

$$
\begin{aligned}
& \text { Switching voltage (V) }
\end{aligned}
$$

The life expectancy of the relay can be determined from the "Endurance" curve shown below, based on the rated switching current $\left(1_{1}\right)$ obtained above. For instance, the electrical endurance
at the obtained maximum switching current of 2 A is slightly over 300,000 operations (see circled point on graph below).

Switching current (A)
However, with a DC load, it may become difficult to break the circuit of 48 V or more due to arcing. Determine the suitability of the relay in actual usage testing.
The correlation between the contact ratings is shown in the following figure:

Switching voltage (V)
Failure Rate
The failure rate indicates the lower limit of switching capability of a relay as the reference value. Such minute load levels are found in microelectronic circuits. This value may vary, depending on operating frequency, operating conditions, expected reliability level of the relay, etc. It is always recommend
relay suitability under actual load conditions.
In this catalog, the failure rate of each relay is indicated as reference value. It indicates failure level at a reliability level of 60% $\left(\lambda_{60}\right) \cdot \lambda_{60}=0.1 \times 10^{-6}$ /operation means that one failure is presumed to occur per 10,000,000 (ten million) operations at a reliability level of 60%.
Number of Poles
The number of contact circuits. See Contact Form for reference. TERMS RELATED TO COILS
Rated Coil Voltage
A reference voltage applied to the coil when the relay is used Coil Symbols

Single-sided stable		Double-winding Latching		
Polarised	Non- Solarised	wingle- winding terminals latching		
	w/3 terminals			

Coil Resistance (Applicable to DC-switching Relays only) The resistance of the coil is measured at a temperature of $23^{\circ} \mathrm{C}$ resistance of an AC-switching type relay may be given for reference when the coil inductance is specified.)

The ratings set forth in the catalog or data sheet are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
Maximum Voltage
The maximum value of the pulsating voltage fluctuations in the operating power supply to the relay coil.
Minimum Pulse Width
The minimum value of the pulsating voltage required to set and reset a latching relay at a temperature of $23^{\circ} \mathrm{C}$.
Must Operate (Must Set) Voltage
The threshold value of a voltage at which a relay operates when the input voltage applied to the relay coil in the reset state is
increased gradually.

Must Release (Must Reset) Voltage

The threshold value of a voltage at which a relay releases when the rated input voltage applied to the relay coil in the operating Power Consumption
The power (= rated voltage x rated current) consumed by the coil when the rated voltage is applied to it. A frequency of 60 Hz is assumed if the relay is intended for AC operation. The current flows through the coil when the rated voltage is applied to the coil at a temperature of $23^{\circ} \mathrm{C}$. The tolerance is $+15 \% /-20 \%$ unless otherwise specified.

TERMS RELATED TO ELECTRICAL CHARACTERISTICS

Dielectric Strength

The critical value which a dielectric can withstand without rupturing when a high-tension voltage is applied for 1 minute
between the following points: Between coil and contact
Between contacts of different polarity
Between contacts of same polarity
Between contacts of same pola
Between set coil and reset co
Between current-carrying metal parts and ground terminal Note that normally a leakage current of 3 mA is detected; occasion.
Electrical Endurance
The life of a relay when it is switched at the rated operating frequency with the rated load applied to its contacts.
High-frequency Isolation (Applicable to High-frequency Relay only)
The degree of isolation of a high-frequency signal, which is
equivalent to the insulation resistance of ordinary relays. equivalent to the insulation resistance of ordinary relays.

G5Y-154P
The following characteristics are measured with contacts unrelated to the measurement terminated at 50Ω, when a signal is
applied from input terminal 11 to output terminal 8 or from input terminal 11 to output terminal 14 of the sample.

1. Isolation characteristics
2. Insertion loss characteristics
3. Return loss

The following conversion formula converts from return loss to vswr.

$$
\begin{aligned}
& \text { VSWR }=\frac{1+10^{-\frac{x}{20}}}{1-10^{-\frac{2}{20}}} \frac{10}{20} \\
& \text { where, } \\
& x=\text { return loss }
\end{aligned}
$$

High-frequency Switching Power (Applicable to Highfrequency Relays Only
The power of a high-frequency signal that can be switched.

High-frequency Transmitted Power (Applicable to Highfrequency Relays Only)
The transmission capacity of a high-frequency signal.
Impulse Withstand Voltage
The critical value which the relay can withstand when the voltage
surges momentarily due to lightning, switching an inductive etc. The surge waveform which has a pulse width of $\pm 1.2 \times 50 \mu \mathrm{~s}$ is shown below:

Insertion Loss (Applicable to High-frequency Relays Only) The attenuation of a high-frequency signal in a transmission line and is equivalent to the contact resistance of ordinary relays. Insulation Resistance
The resistance between an electric circuit such as the contacts and coil, and grounded, non-conductive metal parts such as the core, or the resistance between the contacts. The measured values are as follows:

Rated insulation voltage	Measured value
60 V max.	250 V
61 V min.	500 V

Maximum Operating Frequency
The frequency or intervals at which the relay continuously operates and releases, satisfying the rated mechanical and electrical endurance.

Mechanical Endurance

The life of a relay when it is switched at the rated operating frequency without the rated load.
Operate Bounce Time
The bounce time of the normally open (NO) contact of a relay when the rated coil voltage is applied to the relay coil at an Operate Time
The time that elapses after power is applied to a relay coil until the NO contacts have closed, at an ambient temperature of $23^{\circ} \mathrm{C}$.
Bounce time is not included. For the relays having an operate time Bounce time is not included. For the relays having an operate time of less than 10 ms , the mean (reference) value of its operate time
is specified as follows:

| Operate time | 5 ms max. (mean value: approx. 2.3 ms) |
| :--- | :--- | Release Bounce Time

The bounce time of the normally closed (NC) contact of a relay when the coil is de-energized at an ambient temperature of $23^{\circ} \mathrm{C}$. Release Time
The time that elapses between the moment a relay coil is deenergized until the NC contacts have closed, at an ambient
temperature of $23^{\circ} \mathrm{C}$. (With a relay having SPST-NO or DPST-NO contacts, this is the time that elapses until the NO contacts have operated under the same condition.) Bounce time is not included. For the relays having an operate time of less than 10 ms , the
mean (reference) value of its operate time is specified as follows: mean (reference) value of its operate time is specified as follows:

Release time	5 ms max. (mean value: approx. 2.3 ms)

Reset Time (Applicable to Latching Relays Only) The time that elapses from the moment a relay coil is deenergized until the NC contacts have closed, at an ambient
temperature of $23^{\circ} \mathrm{C}$. (With a relay having SPST-NO contacts, this is the time that elapses until the NO contacts have operated under the same condition.) Bounce time is not included. For the relays having a reset time of less than 10 ms , the mean (reference) value of its reset time is specified as follows:

\section*{| Reset time | 5 ms max. (mean value: approx. 2.3 ms) |
| :--- | :--- |}

Set Time

The time that elapses after power is applied to a relay coil until the NO contacts have closed, at an ambient temperature of $23^{\circ} \mathrm{C}$.
Bounce time is not included. For the relays having a set time of less than 10 ms , the mean (reference) value of its set time is specified as follows:

Reset time	5 ms max. (mean value: approx. 2.3 ms)

Precautions

Basic Information

Before actually committing any component to a mass-production situation, OMRON strongly recommends situational testing, in as close to actual production situations as possible. One reason is to
confirm that the product will still perform as expected after surviving the many handling and mounting processes in involved in mass production. Also, even though OMRON relays are individually tested a number of times, and each meets strict requirements, a certain testing tolerance is permissible. When a high-precision product uses many components, each depends
upon the rated performance thresholds of the other components. Thus, the overall performance tolerance may accumulate into undesirable levels. To avoid problems, always conduct tests under the actual application conditions.

GENERAL

To maintain the initial characteristics of a relay, exercise care that it is not dropped or mishandled. For the same reason, do not remove the case of the relay; otherwise, the characteristics may degrade. Avoid using the relay in an atmosphere containing
sulphuric acid (SO2), hydrogen sulphide (H2S) or other corrosive gases. Do not continuously apply a voltage higher than the rated maximum voltage to the relay. Never try to operate the relay at a voltage and a current other than those rated.
If the relay is intended for DC operation, the coil has polarity. Connect the power source to the coil in the correct direction. Do not use the relay at temperatures higher than that specified in the catalog or data sheet.
The storage for the relay should be in room temperature and humidity.

Shock Resistance
The shock resistance of a relay is divided into two categories: damage to, the relay due to considerably large shocks which may develop during the transportation or mounting of the relay, and "Malfunction" which quantifies the malfunction of the relay while it is in operation.
Stray Capacitance
The capacitance measured between terminals at an ambient temperature of $23^{\circ} \mathrm{C}$ and a frequency of 1 kHz .
VSWR (Applicable to High-frequency Relays Only)
Stands for voltage standing-wave ratio. The degree of reflected vir hion
Vibration Resistanc
The vibration resistance of a relay is divided into two categories damage to, the relay due to considerably large vibrations which may develop during the transportation or mounting of the relay, and "Malfunction" which quantifies the malfunction of the relay due to vibrations while it is in operation.
$a=0.002 f^{2} \mathrm{~A}$
where,
a: Acceleration of vibration
f: Frequency
A: Double amplitude

COIL

1) AC-switching Relays

Generally, the coil temperature of the AC-switching relay rises higher than that of the DC-switching relay. This is because of resistance losses in the shading coil, eddy current losses in the magnetic circuit, and hysteresis losses. Moreover, a phenomenon operates on a voltage lower than that rated. For example, beat may occur if the relay's supply voltage drops. This often happens when a motor (which is to be controlled by the relay) is activated. This results in damage to the relay contacts by burning, contact weld, or disconnection of the seli-holding circuit. Therefore, supply voltage.
One other point that requires attention is the "inrush current." When the relay operates, and the armature of the relay is released from the magnet, the impedance drops. As a result, a current much higher than that rated flows through the coil. This current is known as the inrush current. (When the armature is attracted to
the magnet, however, the impedance rises, decreasing the inrush current to the rated level.) Adequate consideration must be given
the meter to the inrush current, along with the power consumption, especially when connecting several relays in parallel.

2) DC-switching Relay

This type of relay is often used as a so-called "marginal" relay that turns ON or OFF when the voltage or current reaches a critical
value, as a substitute for a meter. However, if the relay is used in this way, its control output may fail to satisfy the ratings because the current applied to the coil gradually increases or decreases, slowing down the speed at which the contacts move. The coil resistance of the DC -switching relay changes by about 0.4% per degree C change in the ambient temperature. It also changes
when the relay generates heat. This means that the must operate and must release voltages may increase as the temperature rises. Coil switching voltage Source
If the supply voltage fluctuates, the relay will be caused to malfunction regardless of whether the fluctuation lasts for a long time or only for a moment.
For example, assume that a large-capacity solenoid, relay, motor, or heater is connected to the same power source as the relay, or that many relays are used at the same time. If the capacity of the
power source is insufficient to operate these devices at the same power source is insufficient to operate these devices at the same
time, the relay may not operate, because the supply voltage has dropped. Conversely, if a high voltage is applied to the relay (even after taking voltage drop into account), chances are that the full voltage will be applied. As a consequence, the relay's coil will generate heat. Therefore, be sure 1) to use a power source with sufficient capacity and 2) that the supply voltage to the relay
within the rated must operate voltage range of the relay. Minimum Must Operate Voltage
When the relay is used at a high temperature, or when the relay coil is continuously energized, the coil temperature rises and coil resistance increases. Consequently, the must operate voltage increases. This increase in the must operate voltage requires attention when determining the minimum must operate voltage are given below for refe
appropriate for the relay.
Assuming a coil temperature rise of $10^{\circ} \mathrm{C}$, the coil resistance will increase about 4\%. The must operate voltage increases as follows:
Rated values of Model LZN2 taken from catalog or data sheet Rated voltage: 12 VDC
Coil resistance: 500Ω
Must operate voltage: 80% max. of rated voltage at $23^{\circ} \mathrm{C}$ coil temperature
The rated current that flows through this relay can be obtained by dividing the rated voltage by the coil resistance. Hence,

■ Coil Input

To guarantee accurate and stable relay operation, the first and foremost condition to be satisfied is the application of the rated voltage to the relay. Additionally, the rated voltage in light of the
type of the power source, voltage fluctuation, and changes in coil resistance due to temperature rise. If a voltage higher than the rated maximum voltage is applied to the coil for a long time, layer short-circuiting and damage to the coil by burning may take place.
Coil Temperature Rise
When a current flows through the coil, the coil's temperature rises to a measurable level, because of copper loss. If an alternating current flows, the temperature rises even more, due not only to he copper loss, but additionally to the iron loss of the magnetic materials, such as the core. Moreover, when a current is applied
to the contact, heat is generated on the contacts, raising the coil temperature even higher (however, with relays whose switching current is rated at 2 A or lower, this rise is insignificant).
$12 \mathrm{VDC}-500 \Omega=24 \mathrm{~mA}$
However, the relay operates at 80% maximum of this rated current, i.e., $19.2 \mathrm{~mA}(=24 \mathrm{~mA} \times 0.8$). Assuming that the coil
temperature rises by $10^{\circ} \mathrm{C}$, the coil resistance increases 4% to temperature rises by $10^{\circ} \mathrm{C}$, the coil resistance increases 4% to
$520 \Omega(=500 \Omega \times 1.04)$. The voltage that must be applied to the relay to flow a switching current of $19.2 \mathrm{~mA} \times 520 \Omega=9.98 \mathrm{~V}$. This voltage, which is at a coil temperature of $33^{\circ} \mathrm{C}\left(=23^{\circ} \mathrm{C}+10^{\circ} \mathrm{C}\right)$, is 83.2% of the rated voltage $(=9.98 \mathrm{~V} \div 12 \mathrm{~V}$). As is evident from this, the must operate voltage increases when the coil temperature rises, in this example, $10^{\circ} \mathrm{C}$ from $23^{\circ} \mathrm{C}$

Coil Temperature vs. Must Operate/release Voltage (LZN)

Ambient temperature (${ }^{\circ} \mathrm{C}$)
The minimum must operate voltage can be determined by this expression.

$$
E_{T}>E \times \frac{E p v+5}{100} \times\left(\frac{T-T a}{234.5+T a}+1\right) / \mathrm{M}
$$

where,
E ($)$: Rated coil voltage
Epv (\%): Must operate voltage
Ta: Coil temperature for determining Epv $\left(20^{\circ} \mathrm{C}\right.$, unless otherwise specified)
T (${ }^{\circ}$ C): Ambient operating temperature
$\mathrm{E}_{\mathrm{T}}(\mathrm{V}$: : Minimum must operate voltage
Note: In the above expression, T is taken to be the result of energization of the coil, when the coil temperature is the same as the ambient temperature.

Temperature Rise by Pulsating Voltag
When a pulsating voltage having an ON time of less than 2 minutes is applied to the relay, the coil temperature rise varies, on the ratio of the ON time to the OFF time. The coil temperature in this case does not rise as high as when a voltage is continuously applied to the relay.

Energization time	Release temperature rise
Continuous energization	100%
ON:OFF $=3: 1$ approx.	80%
ON:OFF $=1: 1$ approx.	50%
ON:OFF $=1: 3$ approx.	35%

Changes in Must Operate Voltage by Coil Temperature Rise The coil resistance of a DC-switching relay increases (as the coil de-energized once, and then immediately energized again. This increase in the coil resistance raises the voltage value at which the relay operates. Additionally, the coil resistance rises when the relay is used at a high ambient temperature
Maximum Must Operate Voltage
The maximum voltage applicable to a relay is determined in accordance with the coil temperature rise and the coil insulation materials' heat resistivity, electrical as well as mechanical life,
general characteristics, and other factors. general characteristics, and other factors.
If a voltage exceeding the maximum voltage is applied to the relay, it may cause the insulation materials to degrade, the coil to however, there are occasions when the maximum voltage is me maximum voltage is exceeded to compensate for fuctuation in the s.
The coil temperature must not exceed the temperature that the spool and wound wire constituting the coil cen withstand The following table shows the wires often used for a coil. In this table, the coil temperature is measured through calculation of the coil resistance.

Wire material	Maximum coil temperature
Polyurethane (UEW)	$120^{\circ} \mathrm{C}$
Polyester (PEW)	$130^{\circ} \mathrm{C}$

How to Calculate Coil Temperature

$$
t=\frac{R 2-R 1}{R 1}(234.5+\mathrm{T} 1)+\mathrm{T} 1\left[\mathrm{C}^{\circ}\right]
$$

where,
R1 (Ω): coil resistance before energization
R2 (Ω): coil resistance after energization
T1 (C): coil temperature (ambient) before energization
$t\left({ }^{\circ} \mathrm{C}\right)$: coil temperature after energization
Before using the relay confirm that there are no problems. DC Input Power Source
Pay attention to the coil polarity of the DC-switching relay. Power sources for DC-operated relays are usually a battery or a DC
power supply, either with a maximum ripple of 5%. If power is supplied to the relay via a rectifier, the must operate and must release voltages vary with the ripple percentage. Therefore, check the voltages before actually using the relay. If the ripple component is extremely large, beat may occur. If this happens, it is recommended that a smoothing capacitor be inserted as shown in the following diagram.

where,
${ }^{m a x}$ maximum value of ripple component E min.: minimum value of rippe compont

If the voltage applied to the DC-operated coil increases or decreases slowly, each contact of a multi-pole contact relay may
not operate at the same time. It is also possible for this situation to result in the must operate voltage varying each time the relay operates. Either way, circuit sequencing will not be correct. In critical applications, the use of a Schmitt circuit is recommended to reshape the DC waveform to trigger all contacts of the relay a the same time

Relay Diving Signal Waveform

A long rise time and/or fall time of the signal driving the relay may situation may shorten the life of the contacts. If this situation cannot be avoided, providing a Schmitt trigger circuit at the circuit stage preceding the relay circuit will shape a waveform with sharp transitions, as shown in the following diagram

If the Schmitt trigger circuit is configured of transistors, a residual voltage may exist in the output of the circuit. Therefore, confirm
that the rated voltage is present across the relay coil, or that the residual voltage drops to zero when the relay releases. When an IC (e.g., TC74HC132P) is used, this value is close to zero. Cyclic Switching of AC Load

If the relay operates in synchronization with the supply voltage, the life of the relay may be shortened. When designing the control system in which the relay is used, estimate the life of the relay and conditions. Moreover construct the circuit so that the relay operates in a random phase or in the vicinity of the zero point.

Dark Current in OFF Time

A circuit that produces a control output as soon as the relay A circuit that produces a control output as soon as the relay electrode dark current flows as shown when the relay operates. When dark current flows into the relay coil, the relay's resistivity to shock and vibration may degrade
Overcoming Beat in DC Relays
When using AC power to generate power for operating a DC relay, the use of half-wave rectification causes the formation of a
pulsating current. Therefore, when the capacitance of the smoothing capacitor C is low, the relay generates a beat. However, when a bridge rectification circuit is used, the frequency of the pulsating current doubles, generating no beat even when a smoothing capacitor C is not provided. The bridge rectification circuit can provide a higher rectification efficiency to increase the service life of the contact. service life of the contact.

Voltage Considerations for AC Relay For stable relay operation, a voltage $+10 \%$ to -20% of the rated voltage should be applied to the relay. The voltage applied to the
relay must be a sine wave. When a commercial power source is used, there should be no problem. However, if an AC stabilized power source is used, either beat or abnormal heating may occur, depending on the wave distortion of the power source. A shading coil is used to suppress beat in an AC current coil, but wave distortion defeats this function
When a motor, solenoid, transformer, or other device is connected to the same power line source as the relay controller, and any of
these devices causes a drop in the line voltage, the relay may vibrate, damaging the contact. This commonly occurs when a small transformer is added to the line, when the transformer is too small, when long wiring is used, or when thin wiring is used in the customer's premises. Be aware of this phenomenon, as well as normal voitage fluctuations. Should this problem occur, check the
change in voltage with a synchroscope or the like, and take appropriate countermeasures. Effective countermeasures include replacing the relay with a special relay suited to the circumstances, or use of a DC circuit and inclusion of a capacitor to compensate for the voltage change, as shown in the following circuit diagran.
ion circuit
incorporating a capacitor

- Contacts

The contacts are the most important constituent of a relay. Their characteristics are significantly affected by factors such as the material of the contacts, voltage and current values applied to them (especially, the voltage and current waveforms when energizing and de-energizing the contacts), the type of load, bounce. If any of these factors fail to satisfy predetermined values, problems such as metal deposition between contacts, contact welding, wear, or rapid increase in the contact resistance may occur.
Switching voltage (AC, DC)
When a relay breaks an inductive load, a fairly high counterelectromotive force (counter emf) is generated in the
relay's contact circuit. The higher the counter emf, the greater the damage to the contacts. This may result in a significant decrease in the switching power of DC-switching relays. This is because, unlike the AC-switching relay, the DC-switching relay does not have a zero-cross point. Once arc has been generated, it does not easily diminish, prolonging the arc time. Moreover, the
unidirectional flow of the current in a DC circuit may cause metal deposition to occur between contacts and the contacts to wear rapidly (this is discussed later),
Despite the information a catalog or data sheet sets forth as the approximate switching power of the relay, always confirm the actual switching power by performing a test with the actual load. Switching Current
The quantity of electrical current which flows through the contact directly influences the contact' characteristics. For example,
when the relay is used to control an inductive load such as a motor or a lamp, the contacts will wear more quickly, and metal deposition between the mating contacts will occur more often as the inrush current to the contacts increases. Consequently, at some point the contacts may not be able to open.

Contact Materials

Selection of an appropriate contact material according to the load to be opened or closed is important. Several contact materials and their properties are listed below.

Contact Materials and Feature

P. G. S. Alloy	This material has excellent corrosion resistance and is suitable for very small current circuits. (Au : Ag : Pt = 69 : 25: 6)
AgPd	This material exhibits good corrosion and sulphur resistance. In a dry circuit, it attracts organic gas to generate a polymer, therefore it is usually plated with gold or other material.
Ag	This material has the highest electric and heat conductivities among all metals. It exhibits low contact resistance, but easily forms sulphide film in a sulphide gas environment. This may result in defective contact performance at a low-voltage small-current operation.
AgCdO	This material exhibits the same high electric conductivity as silver, Iow contact resistance, and excellent deposition resistance. It easily forms sulphide film in a sulphide gas environment.
AgNi	This material exhibits the same high electric conductivity as silver and excellent arc resistance.
AgSnIn	This material exhibits excellent deposition resistance and exhaustion resistance.
AgW	This material exhibits a high hardness and melting point. It also exhbibits excellent arc resistance and superior resistance to deposition and transfer. However, it shows high contact resistance and inferior environmental resistance.

Contact Protection Circuit
A contact protection circuit, designed to prolong the life of the relay, is recommended. This protection will have the additional advantages of suppressing noise, as well as preventing the generation of carbide and nitric acid, which otherwise would be opened. However, unless designed correctly, the protection circuit may produce adverse effects, such as prolonging the release time of the relay.

The following table lists examples of contact protection circuits.

Circuit example		Applicability		Features and remarks	Element selection
		AC	DC		
CR		Fair	Good	Load impedance must be much smaller than the RC circuit when the relay operates on an AC voltage.	Optimum C and R values are: C: 1 to $0.5 \mu \mathrm{~F}$ for $1-\mathrm{A}$ switching current R: 0.5 to 1Ω for $1-\mathrm{V}$ switching voltage
		Good	Good	The release time of the contacts will be delayed when a relay solenoid is used as a load. This circuit is effective if connected across the load when the supply voltage is 24 to 48 V . When the supply voltage is 100 to 240 V , connect the circuit across the contacts.	These values do not always agree with the optimum values due to the nature of the load and the dispersion in the relay characteristics. Confirm optimum values experimentally. Capacitor C suppresses discharge when the contacts are opened, while resistor R limits the current applied when the contacts are closed the next time. Generally, employ a capacitor C whose dielectric strength is 200 to 300 V . If the circuit is powered by an AC power source, employ an AC capacitor (non-polarized).
Diode		Poor	Good	The energy stored in a coil (inductive load) reaches the coil as current via the diode connected in parallel with the coil, and is dissipated as Joule (measurable) heat by the resistance of the inductive load. This type of circuit delays the release time more than the RC type.	Employ a diode having a reverse breakdown voltage of more than 10 times the circuit voltage and a forward current rating greater than the load current. A diode having a reverse breakdown voltage two to three times that of the supply voltage can be used in an electronic circuit where the circuit voltage is not particularly high.
Diode + Zener Diode		Poor	Good	This circuit effectively shortens release time in applications where the release time of a diode protection circuit proves to be too slow.	The zener diode breakdown voltage should be about the same as the supply voltage.
Varistor		Good	Good	By utilizing the constant-voltage characteristic of a varistor, this circuit prevents high voltages from being applied across the contacts. This circuit also somewhat delays the release time. This circuit, if connected across the load, is effective when the supply voltage is 24 to 48 V . If the supply voltage is 100 to 240 V , connect the circuit across the contacts.	-

Avoid use of a surge suppressor in the manner shown below.

Technical Information - Relays

■ Latching Relays

Avoid
Avoid use in magnetic fields (over 8,000 A.m).
Take measures to preventing problems caused by vibration or shock. Problems may originate from other relay(s) operating or releasing on the same panel.
Avoid simultaneous energization of the set and reset coils, even though both coils can be continuously energized
Avoid use under conditions where excessive surge-generating sour plann to mount multipce,
When planning to mount multiple relays together, observe the Drive Circuit (Double-winding Relays G5AK, G6AK, G6BK, etc.)
When a DC-switching latching relay is used in one of the circuits shown in the following diagram, the relay contacts may be released from the locked state unless a diode (enclosed in the dotted box in the circuit diagram) is connected to the circuit. Circuits

When connecting a diode to the relay circuit, be sure to use a diode with a repetitive peak-inverse voltage, and a DC reverse sure that the diode has an average rectified current greater than the coil current.
If the contact of the relay is used to de-energize the relay, the relay may not operate normally. Avoid using the relay in a circuit like the one shown below

Incorrect Use:

Circuit connecting two set coils in parallel

Circuit connecting set coil of latching relay
in parallel with another relay coil.

- PCB Design

Soldering

As demands for more compact electronic devices have grown, so have demands declined for the plug-in relays that requires a bulky
socket for connection. This trend has lead to the development of socket for connection. This trend has lead to the development of have made possible great density increases on the PCB, which in turn reduces the size of the product or device. However, unless the relay is fully sealed, when soldered onto a PCB, flux may penetrate into the housing, adversely affecting the internal circuitry
The following points will help when designing a product which uses relays. This section points out details to be noted when soldering a relay to a PCB.

In general, relays are directly mounted and soldered onto a PCB Although seemingly an uninvolved process, soldering and its application, and of flux application, relay mounting, heat performance. For example, if the PCB were to warp, the internal mechanism of the relay could become distorted, degrading the performance characteristics. Thus it could be said that the relay's characteristics are also affected by the size, thickness, and material of the PCB. Therefore, carefully select a PCB that will not jeopardise the performance of the relay

PCB MATERIALS

Generally, the substrate of a PCB is made of glass epoxy (GE), paper epoxy (PE), or paper phenol (PP). Of these, the glass-epoxy or paper-epoxy PCB is recommended for mounting relays. See the following table

Item	Epoxy Based		Phenol-based
	Glass Epoxy (GE)	Paper Epoxy (PE)	Paper Phenol (PP)
Electrical characteristics	High insulation resistance. Insulation resistance hardly affected by humidity.	Fair	Insulation resistance degraded by humidity.
Mechanical characteristics	Little expansions/shrinkage caused by change in temperature or humidity. Suitable for through-hole and multi-layered PCBs.	Fair	Much expansion/shrinkage caused by changes in temperature or humidity. Not suitable for through-hole PCB.
Cost Effectiveness	Expensive	Fair	Fair

PCB Thickness

PCBs having a thickness of $0.8,1.2,1.6$, or 2.0 mm are generally used. A PCB that is 1.6 mm thick is best for mounting a PCB relay, (The terminal length of OMRON relays is $3,3.5$, or 4.0 to 5.0 mm .)

Terminal Hole Diameter and Land Diameter
Select the appropriate terminal hole and land diameters from the following table, based on the PCB mounting hole drawing. Land
diameters may be reduced to less than those listed below if the through-hole connection process is to be employed.
Terminal Hole and Land Diameters

Terminal Hole Diameter		Minimum Land Diameter	
Normal	Tolerance		
0.6 mm	$\pm 0.1 \mathrm{~mm}$	1.5 mm	
0.8 mm		1.8 mm	
1.0 mm		2.0 mm	
1.2 mm		2.5 mm	
1.3 mm		2.5 mm	
1.5 mm		3.0 mm	
1.6 mm		3.0 mm	
2.0 mm		3.0 mm	

Shape of Lands
The land section should be on the center line of the copper-foil pattern, so that the soldered fillets become uniform.

A break in the circular land area will prevent molten solder from
A break iling holes reserved for components which must be soldered manually after the automatic soldering of the PCB is complete.

- Break in land

Conductor Width and Thickness
The following thickness of copper foil are standard: $35 \mu \mathrm{~m}$ and $70 \mu \mathrm{~m}$. The conductor width is determined by the current flow and

Conductor Pitch
The conductor pitch on a PCB is determined according to the insulation resistance between conductors and the environmental conditions under which the PCB is to be placed. The following
graph shows the general relationship between the voltage between conductors and the conductor pitch on a PCB. However, if the PCB must conform to safety organization standards (such as UL, CSA, VDE, etc.), priority must be given to fulfilling their requirements.
to 0.5 mm

Conductor pitch (mm)
$A=w / 0$ coating at altitude of $3,000 \mathrm{~m}$ max.
$B=W / 0$ coating at altitude of $3,000 \mathrm{~m}$
 $C=w / c o a t i n g$ at altititude of $3,000 \mathrm{~m}$ max.
$D=w / / 00 a t i n g ~ a t ~ a l t i t u d e ~ o f ~$
$3,000 \mathrm{~m}$ or higher

Temperature and Humidity

PCBs expand or contract with changes in temperature. Should expansion occur with a relay mounted on the PCB, the internal
components of the relay may be shifted out of operational tolerance. As a result, the relay may not be able to operate with its normal characteristics.
PCB materials have "directionality," which means that a PCB generally has expansion and contraction coefficients $1 / 10$ to $1 / 2$ higher in the vertical direction than in the horizontal direction. Conversely, its warp in the vertical direction is $1 / 10$ to $1 / 2$ less
than in the horizontal direction. Therefore take adequate countermeasures against humidity by coating the PCB. Should heat or humidity be entirely too high, the relay's physical characteristics will likewise be affected. For example, as the heat rises the PCB's insulation resistance degrades. Mechanically, PCB parts will continue to expand as heat is applied, eventually passing the
elastic limit, which will permanently warp components.
Moreover, if the relay is used in an extremely humid environment, silver migration may take place.
Gas
Exposure to gases containing substances such as sulphuric acid, nitric acid, or ammonia can cause malfunctions such as faulty to corrode, or prevent positive contacts between the PCB's connectors. Of the gases mentioned, nitric acid is particularly damaging as it tends to accelerate the silver migration. As a counter-measure against gas exposure damage, the following processes on the relay and PCB have proved useful.

Item	Process
Outer Casing, housing	Sealed construction by using packing, etc
Relay	Use of simplified hermetically sealed type relay, DIP relay, reed relay
PCB, Copper Firm	Coating
Connector	Gold-plating, rhodium-plating process

Vibration and Shock
Although the PCB itself is not usually a source of vibration or shock, it may simplify or prolong the vibration by resonate with attention to the following points.

Mounting Method	Process
Rack Mounting	No gap between rack's guide \& PCB
Screw Mounting	Securely tighten screw. Place heavy components such as relays on part of PCB near where screws are to be used. Attach rubber washers to screws when mounting components that are affected by shock (such as audio devices.)

Mounting Position
Depending on where the relay is mounted, the function of the relay (and the performance of the circuit which includes the relay) may be adversely affected.
The relay may malfunction if it is mounted near a transformer or other device that generates a large magnetic field, or much heat. Provide an devices.
Also, keep the relay away from semiconductor devices, if they are to be mounted on the same PCB.

Mounting Direction
To allow a relay to operate to its full capability, adequate consideration must be given to the mounting direction of the relay.
Relay characteristics that are considerably influenced by Relay characteristics that are considerably influenced by mountin
reliability

Shock Resistance

Ideally, the relay must be mounted so that any shock or vibration is applied to the relay at right angles to the operating direction of
the armature of the relay. Especially when a relay's coil is not energized, the shock resistance and noise immunity are significantly affected by the mounting direction of the relay. Life
When switching a heavy load that generates arc (generally, having a greater impedance than that of the relay coil), substances spattered from the contact may accumulate in the vicinity,
resulting in degradation of the insulation resistance of the circuit. Mounting the relay in the correct direction is also important in preventing this kind of degradation of the insulation resistance. Contact Reliability
Switching both a heavy and a minute load with a single relay contact is not recommended. The reason for this is that the substances scattered from the contact when the heavy load is switched degrade the contact when switching the minute load.
For example, when using a multi-pole contact relay, avoid the For example, when using a multi-pole contact relay, avoid the
mounting direction or terminal connections in which the minute load switching contact is located below the heavy load switching contact.

Mounting Interval

When mounting multiple relays side by side on a PCB, pay attention to the following points:
When many relays are mounted together, they may generate an
abnormally high heat due to the thermal interference between the abnormally high heat due to the thermal interference between the
relays. Therefore, provide an adequate distance between the relays to dissipate the heat. When using a relay, be sure to check the minimum mounting interval.
Also, if multiple PCBs with relays are mounted to a rack, the temperature may rise. In this case, preventive measures must be taken so that the ambient temperature falls within the rated value. PATTERN LAYOUT
Countermeasures Against Noise
The relay can be a noise source when viewed from a
semiconductor circuit. This must be taken into consideration semiconductor circuit. This must be taken into consideration
when designing the layout positioning of the relay and other semiconductor components on the PCB.
Keep the relay away from semiconductor components as far away as possible.
Locate the surge suppressor for the relay coil as close to the relay as possible.
Do not route wiring for signals such as audio signals that are likely to be affected by noise below the relay.
Design the shortest possible pattern.
One method for separating the power source and relay from other
electronic components is to use shielded patterns.

- Automatic Mounting of Relay on PCB
 though-hole mounting

The following tables list the processes required for mounting a relay onto a PCB and the points to be noted in each proces Process 1: Placement
Do not bend any terminal of the relay to use it as a self-clinching relay or the relay may malfunction.
It is recommended to use magazine-packaged self-clinching relays for placement onto the PCB.
Possibility of Automatic Placement

Construction	Unsealed	Flux protection	Fully sealed
Magazine-packaged relay Self-clinching relays	NO	YES	YES

Process 2: Flux Application
To apply flux to a flux protection or fully sealed relay, a sponge soaked with flux can be used. Place the relay in the holes drilled in the through the PCB holes. This method must never be applied with an unsealed relay because the flux will penetrate into the relay. The flux used with the sponge must be a non-corrosive resin-type flux.
For the flux solvent, use an alcohol-based solvent, which tends to be less chemically reactive,
Apply the flux sparingly and evenly to prevent penetration into the relay. When dipping the relay terminals into liquid flux, be sure to adjust the flux level, so that the upper surface of the PCB is not flooded with flux.
Possibility of Dipping Method

Unsealed	Flux protection	
NO	YES	NO

Process 3: Transportation
When the PCB is transported, the relay mounted on the PCB may be lifted from the board surface due to vibration. This can be prevented if the relay mounted on the PCB has self-clinching terminals.

Coating

As is also the case in humid environments, coating the PCB is recommended to prevent the insulation of its pattern form being the PCB, however, care must be exercised not to allow the coating agent to penetrate into the relays mounted on the PCB; otherwise, faulty contact of the relay may occur due to sticking or coating. Moreover, some coating agents may degrade or adversely affect the relay. Select the coating agent carefully

Type of Coating

Item	Applicability to PCB with relays mounted	Feature
Epoxy	Good	Good insulation. Performing this coating is a little difficult, but has no effect on relay contact.
Urethane	Good	Good insulation and easy to coat. Be careful not to allow the coating on the relay itself, as thinner-based solvents are often used with this coating.
Silicon	Good	Good insulation and easy to coat. However, silicon gas may cause faulty contact of relay.

Technical Information - Relays

Process 4: Preheating
Preheat the PCB at a temperature of $100^{\circ} \mathrm{C}$ maximum within a period of approximately one minute for smooth soldering. The characteristics of the relay may change if it is heated at a high temperature for a long time.

Possibility of Preheating

Unsealed		Flux protection	
NO	YES	Fully sealed	

Process 5: Soldering
Flow soldering is recommended to assure a uniform solder joint.

- Solder: JIS Z3282, H60, or H63*
- Solder temperature and soldering time: $250^{\circ} \mathrm{C}, 5 \mathrm{~s}$ max
- Adjust the level of the molten solder so that the PCB is not flooded with solder. - Aossibility of Automatic Soldering

Unsealed	Flux protection	
NO	YES	

- Manual Soldering

Complete the soldering operation quickly. Use the correct wattage of soldering
iron. Do not overheat while smoothing the applied solder with the tip of the iron.

- Solder: JIS Z3282, H60, or H63 (containing resin-type flux)
- Solder: JIS Z3282, H60, or H63 (containing resin-type flux)
- Tip temperatur
- Soldering time: 3 s max.
assibity of Manual Soldering

Unsealed	Flux protection	Fully sealed				
YES	YES	YES		YES	YES	YES
:---	:---	:---				

Type	Sparkle solder
Applicable solder diameter	0.8 to 1.6 mm
Sn	58.8%
Flux content	1.67%
Impurities	JIS Z3282 Class A
Spread rate	90%
Storage	3 months max.

The solder in the illustration shown above is provided with a cut section to prevent the flux from splattering.

Process 6: Cooling
Upon completion of automatic soldering, use a fan or other device to forcibly cool the PCB. This helps prevent the relay and other components from deteriorating from the residual heat of soldering.
Fully sealed relays are washable. Do not, however, put fully sealed relays in a cold cleaning solvent immediately after soldering or the seals may be damaged.

Flux protection	Fully sealed
Necessary	Necessary

Process 7: Cleaning
Avoid cleaning the soldered terminals whenever possible. When a resin-type flux is used, no cleaning is necessary. If cleaning cannot be avoided, exercise care in selecting an appropriate cleaning solvent.
Clensing Method

Unsealed	Flux protection	Fully sealed
Boiling cleaning and immersion cleaning are not possible. Clean only the back of the PCB with a brush.	Boiling cleaning and immersion cleaning are possible. Ultrasonic cleaning will have an adverse effect on the performance of relays not specifically When cleaning the Ganufactured for ultrasonic cleaning. Grany other relay, the ambient temperature must be within the permissible ambient operating temperature range of the relay.	

List of Cleaning Solvents
Solvent Fully Seated Chlorine-based Perochlene Chlorosolder Trichloroethylene Yes Water-based Indusco Holys Yes Alcohol-based IPA Ethanol Yes Others Thinner Gasoline No Cleaning method Automatic cleaning Ultrasonic cleaning (see note 4)

Note: 1. Consult your OMRON representative before using any other cleaning solvent. Do not use Freon-TMC-based, thinner-based, or gasoline-based cleaning solvents.
2. Worldwide efforts are being made at discontinuing the use of CFC-113-based (fluorochlorocarbon-based) and trichloroethylenebased cleaning solvents. The user is requested to refrain from using these cleaning solvents
3. It may be difficult to clean the space between the relay and PCB using hydrogen-based or alcohol-based cleaning solvent. It is recommended the stand-off-type be used G6A- \square-ST when using hydrogen-based or alcohol-based cleaning solvents.
4. Ultrasonic cleaning may have an adverse effect on the performance of relays not specifically manufactured for ultrasonic cleaning. Please refer to the model number to determine if your relay is intended to be cleaned ultrasonically

Process 8: Coating

Do not apply a coating agent to any flux-resistant relay or relay with a case because the coating agent will penetrate into the relay and the contacts may be damaged.
Some coating agents may damage the case of the relay. Be sure to use a proper coating agent.
Do not fix the position of relay with resin or the characteristics of the relay will change.

Resin	Fully Sealed
Epoxy	YES
Urethane	YES
Silicone	NO
Fluorine	YES

SURFACE MOUNTING

The following tables list the processes required for mounting a relay onto a PCB and the points to be noted in each process. Process 1: Cream Solder Printing
Do not use a cream solder that contains a flux with a large amount of chlorine or the terminals of the relay may be corroded. Process 2: Relay Mounting
The holding force of the relay holder must be the same as or more than the minimum holding force value required by the relay.

Process 3: Transportation
The relay may be dismounted by vibration during transportation. To prevent this, it is recommended an adhesive agent be applied to the relay's gluing part (protruding part) to tack the relay.
Adhesive Agent Application Methods

Process 4: Soldering Reflow
IRS (infrared soldering)

VPS (vapor-phase soldering)
Do not put the relay in a cold cleaning solvent immediately afte soldering or the seal of the relay may be damaged. Recommended VPS Conditions (G6H-2F)

Time (s)

Process 5: Cleaning
Boiling cleaning and immersion cleaning are recommended
Ultrasonic cleaning will have an adverse effect on the performance of relays not specifically manufactured for ultrasonic cleaning List of Cleaning Solvent

Solvent		Fully Seated
Chlorine-based	Perochlene Chlorosolder Trichloroethylene	Yes
Water-based	Indusco Holys	Yes
Alcohol-based	IPA Ethanol	Yes
Others	Thinner Gasoline	No
Cleaning method	Automatic cleaning Ultrasonic cleaning (see note 4)	

Note: 1. Consult your OMRON representative before using any other cleaning solvent. Do not use Freon-TMC-based, thinner-based, or gasoline-based cleaning solvents.
2. Worldwide efforts are being made at discontinuing the use of CFC-113-based (fluorochlorocarbon-based) and trichloroethylenebased cleaning solvents. The user is requested to refrain from using these cleaning solvents
3. It may be difficult to clean the space between the relay and PCB using hydrogen-based or alcohol-based cleaning solvent. It is recommended the stand-off-type be used G6A- \square-ST when using hydrogen-based or alcohol-based cleaning solvents.
4. Ultrasonic cleaning may have an adverse effect on the performance of relays not specifically manufactured for ultrasonic cleaning. Please refer to the model number to determine if your relay is intended to be cleaned ultrasonically

Model		G5B	G5NB-E	G5SB
Features		Miniature relay	Compact single pole 5A high isolation relay CTI: 250	Environmentally friendly compact relay
Dimensions (LxWxH)				
Contact Ratings	Contact Form	SPST-NO	SPST-NO	SPST
	Contact Type	Single	Single	Single
	Contact Material	Ag	Ag Alloy	Ag
	Resistive Load	3 A at 125 VAC 3 A at 30 VDC	5 A at 250 VAC 5 A at 30 VDC	3 A at 125 VAC 5 A at 30 VDC
	Max. Switching Current	3 A	5 A	5 A
	Min. Permissible load	10 mA at 5 VDC	10 mA at 5 VDC	10 mA at 5 VDC
	Max. Switching Power	$750 \mathrm{VA}, 90 \mathrm{~W}$	1,250 VA, 90 W	1250 VA, 150 W
	Max. Switching Voltage	$250 \mathrm{VAC}, 30 \mathrm{VDC}$	$250 \mathrm{VAC}, 30 \mathrm{VDC}$	$250 \mathrm{VAC}, 30 \mathrm{VDC}$
Coil ratings	Rated Voltage	5 to 24 VDC	5 to 24 VDC	5 to 24 VDC
	Power Consumption (Approx.)	360 mW (200 mW high sensitivity)	200 mW	$\begin{array}{\|l} \hline 400 \mathrm{~mW} \\ \text { (200 mW } \\ \text { high sensitivity) } \end{array}$
Endurance	Electrical (operations)	200,000 min	100,000 (5A / 250 VAC) 50,000 (5A / 30 VDC)	50,000 min
	Mechanical (operations)	5,000,000 min	5,000,000	5,000,000 min
Dialectric strength	Between coil and contacts	2,000 VAC	4,000 VAC	4,000 VAC
	Between contacts of different polarity	-	-	-
	Between contacts of same polarity	750 VAC	750 VAC	1,000 VAC
Ambient temperature (operating)		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Variations	Single Side Stable	-	-	-
	Single Winding Latch			
	Double Winding Latch			
	PCB Terminal	-	-	-
	Plug-in Terminal			
	Quick Connect Termi			
	Panel Mount			
	Fully sealed			
	Flux Protection	-	-	
Approved Standards		UL, CSA, IEC (TUV)	UL, CSA, VDE	UL, CSA
Page		41	45	49

Selection Guide - Power Relays
OmROn

Model		G6B		G2RG
Features		Sub-miniature relay		Power Relay with $2 \times 1.5 \mathrm{~mm}$ contact gap. Meets requirements of european UPS standars.
Appearance				$29 \times 13.5 \times 25.5$
$\begin{array}{\|l\|} \hline \text { Contact } \\ \text { Ratings } \end{array}$	Contact Form	SPST-NO	SPST-NO/NC, DPST-NO DPST-NC	DPST-NO
	Contact Type	Single		Single
	Contact Material	AgCdO		Ag Alloy
	Resistive Load	5 A at 250 VAC 5 A at 30 VDC		8 A at 250 VAC
	Max. Switching Current	5 A		8 A
	Min. Permissible load	10 mA at 5 VDC		10 mA at 5 VDC
	Max. Switching Power	1,250 VA, 125 W		2,000 VA, 240 W
	Max. Switching Voltage	$380 \mathrm{VAC}, 125 \mathrm{VDC}$		$\begin{aligned} & 380 \text { VAC, } \\ & 125 \text { VDC } \end{aligned}$
Coil ratings	Rated Voltage	5 to 24 VDC		12 \& 24 VDC
	Power Consumption (Approx.)	120 mW	300 mW	800 mW
Endurance	Electrical (operations)	100,000 min		10,000 min
	Mechanical (operations)	50,000,000 min		1,000,000 min
Dialectric strength	Between coil and contacts	3,000 VAC		5,000 VAC
	Between contacts of different polarity	-	2,000 VAC	3,000 VAC
	Between contacts of same polarity	1,000 VAC		1,000 VAC
Ambient temperature (operating)		$-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Variations	Single Side Stable	-		-
	Single Winding Latching	-		
	Double Winding Latching	-		
	PCB Terminal	-		-
	Plug-in Terminal			
	Quick Connect Terminal			
	Panel Mount	-		
	Fully sealed			-
	Flux Protection			-
Approved Standards		UL, CSA, SEV, IEC, (TÜV)		UL, CSA, VDE
Page		61		68

Selection Guide - Power Relays
omron

Selection Guide - Power Relays
OmROn

Selection Guide - Power Relays
OmROn

Selection Guide - Power Relays
OmROn

Selection Guide - Power Relays
OmROn

Selection Guide - Power Relays
OmROn

Selection Guide - DC Power Relays
OmROn

Model		G9EA		G9EC
		G9EA-1(-B)	G9EA-1(-B)-CA	G9EC-1(-B)
Classification		Switching/current conduction	High-current conduction	Switching/current conduction
Appearance		Cins		
Features		Standard model Compact, carries/switches $400 \mathrm{~V}, 60 \mathrm{~A}$ loads	Carries 100 A Low contact resistance when carrying current	Largest capacity in series Carries/switches 400 V , 200 A loads
Contact	Contact Form	SPST-NO		SPST-NO
	Contact structure	Double-break, single		Double-break, single
	Contact resistance	$\begin{array}{\|l\|} \hline 30 \mathrm{~m} \Omega \text { max. } \\ \text { (} 0.6 \mathrm{~m} \Omega \text { typical } \end{array}$	$\begin{aligned} & \hline 10 \mathrm{~m} \Omega \text { max. } \\ & \text { (0.3 } \mathrm{m} \Omega \text { typical } \end{aligned}$	$30 \mathrm{~m} \Omega$ max. ($0.2 \mathrm{~m} \Omega$ typical)
	Switching voltage drop	0.1 V max. (for a carry current of 60 A)	0.1 V max. (for a carry current of 100 A)	0.1 V max. (for a carry current of 200 A)
	Electrical endurance	120 VDC, 100 A , 3,000 operations min.	400 VDC, 30 A, 1,000 operations min.	400 VDC, 200 A, 3,000 operations min.
		400 VDC, 60 A, 3,000 operations min.	120 VDC, 30 A , 2,500 operations min.	-
		$400 \mathrm{VDC}, 30 \mathrm{~A}$, 30,000 operations min.	-	-
	Maximum switching current	100 A	30 A	200 A
	Rated carry current	60 A	100 A	200 A
	Short-time carry current	100 A (10 min)	$150 \mathrm{~A}(10 \mathrm{~min})$	300 A (15 min)
	Maximum interruption current	600 A at 300 VDC (5 times)	-	$\begin{aligned} & 1,000 \mathrm{~A} \text { at } 400 \mathrm{VDC} \\ & \text { (10 times) } \end{aligned}$
	Overload interruption	180 A at 400 VDC (100 times min.)	100 A at 120 VDC (150 times min.)	700 A at 400 VDC (40 times min.)
	Reverse polarity interruption	-60 A at 200 VDC (1,000 times min.)	-	-200 A at 200 VDC (1,000 times min.)
Coil	Rated voltage	12, 24, 48, 60 \& 100 VDC		12, 24, 48, 60 \& 100 VDC
	Power consumption	Approx. 5 to 5.4 W		Approx. 11 W
Mechanical endurance		200,000 operations min.		200,000 operations min.

Selection Guide - DC Power Relays
OmROn

Model	G9EA		G9EC
	G9EA-1(-B)	Gwitching/current conduction	High-current conduction
Classification		Switching/current conduction	
Appearance			

Note: 1. The insulation resistance was measured with a 500 VDC megohmmeter.
2. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$)

Single-pole 3-A Miniature Relay

■ Impulse withstand voltage of 10 kV (between coil and contacts).
Models available with 200-mW current consumption (High-sensitivity Type).
■ High-capacity (8 A) type available.
■ UL/CSA/TÜV approved

메앙

Ordering Information

Classification	Contact form	Enclosure ratings	Model
Standard	SPST-NO	Flux protection	G5B-1
			G5B-1-H
High-sensitivity			G5B-1-E

Note: 1. 6 VDC can be also produced.
2. When ordering, add the rated coil voltage to the model number

Example: G5B-1 12 VDC
Rated coil voltage
G5B $-\frac{\square}{1}-\frac{\square}{2} \frac{\square}{3}$ VDC

1. Number of Poles

1: 1 pole (SPST-NO)
3. Rated Coil Voltag

5, 12, 24 VDC
2. Classification

H: High-sensitivity
E: High-capacity

Specifications

■ Coil Ratings

Item	Standard type, high-capacity type			High-sensitivity type		
Rated voltage	5 VDC	12 VDC	24 VDC	5 VDC	12 VDC	24 VDC
Rated current	72.0 mA	30.0 mA	15.0 mA	40.0 mA	16.7 mA	8.3 mA
Coil resistance	69.4Ω	400Ω	1,600 Ω	125Ω	720Ω	2,880 Ω
Must operate voltage	Standard type: 70\% max. of rated voltage High-capacity type: 75\% max. of rated voltage			75% max. of rated voltage		
Must release voltage	5\% min. of rated voltage					
Max. voltage	$\begin{aligned} & 140 \% \text { (at } 23^{\circ} \mathrm{C} \text {) } / 110 \% \text { (at } 70^{\circ} \mathrm{C} \text {) of } \\ & \text { rated voltage } \end{aligned}$			160% (at $23^{\circ} \mathrm{C}$) 130% (at $70^{\circ} \mathrm{C}$) of rated voltage		
Power consumption	Approx. 360 mW			Approx. 200 mW		

- Contact Ratings

Item	Standard type, high-capacity type	High-sensitivity type
Load	Resistive load (cosf = 1)	-
Rated load	3 A at $125 \mathrm{VAC}, 3$ A at 30 VDC	8 A at $125 \mathrm{VAC}, 8 \mathrm{~A}$ at 30 VDC
Contact material	Ag	AgCdO
Rated carry current	3 A	8 A
Max. switching voltage	$250 \mathrm{VAC}, 30 \mathrm{VDC}$	
Max. switching current	3 A	8 A
Max. switching power	$750 \mathrm{VA}, 90 \mathrm{~W}$	2,000 VA, 240 W
Failure rate (ref. value)	$5 \mathrm{VDC}, 10 \mathrm{~mA}$	$5 \mathrm{VDC}, 100 \mathrm{~mA}$

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation (with an operating frequency of 120 operations $/ \mathrm{min}$)

- Characteristics

Contact resistance	$100 \mathrm{~m} \Omega$ max.
Operate time	10 ms max.
Release time	10 ms max.
Insulation resistance	$1,000 \mathrm{M} \Omega \mathrm{max}$. (at 500 VDC)
Dielectric strength	$2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts; $750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75$-mm single amplitude (1.5-mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (1.5-mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: $5,000,000$ operations min. (at 18,000 operations/hr) Electrical: 200,000 operations min. (at 1,800 operations/hr) for standard type, high-sensitivity type 100,000 operations min. (at 1,200 operations $/ \mathrm{hr}$) for high-capacity type
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to 70° (with no icing)
Ambient humidity	Operating: 5% to 85%
Weight	Approx. 7 g g

Note: The data shown above are initial values.

- Approved Standards

UL508 (File No. E41643)/CSA C22.2 No.0, No. 14 (File No. LR31928)

Model	Coil ratings	Contact ratings
G5B-1, G5B-1-H	3 to 24 VDC	$3 \mathrm{~A}, 250 \mathrm{VAC}$ (general use)
		$3 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive)
		$1 / 8 \mathrm{hp}, 125 \mathrm{VAC} / 1 / 8 \mathrm{hp}, 250 \mathrm{VAC}$
		$\mathrm{TV}-2125 \mathrm{VAC}$

TÜV VDE0435 IEC255 (File No. R9251225)

Model	Coil ratings	Contact ratings	Condition
G5B-1, G5B-1-H	3 to 24 VDC	$\begin{aligned} & 3 \mathrm{~A}, 250 \mathrm{VAC} \sim(\cos \varnothing=1) \\ & 3 \mathrm{~A}, 30 \mathrm{VDC}=(0 \mathrm{~ms}) \end{aligned}$	Duty level: class III Operative range: 2
G5B-1-E		$\begin{aligned} & 8 \mathrm{~A}, 125 \mathrm{VAC} \sim(\cos \varnothing=1) \\ & 8 \mathrm{~A}, 30 \mathrm{VDC}=(0 \mathrm{~ms}) \end{aligned}$	Pick-up class: class a Pollution degree: 2 Overvoltage category: II Material group: Illa Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Engineering Data

Switching voltage (V)

Switching current (A)

Ambient Temperature v
Maximum Coil Voltage

Ambient temperature $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$

Note: The maximum coil voltage refers to the max mum value in a varying range of operating
power voltage, not a continuous voltage.

Dimensions
Note: 1. All units are in millimeters unless otherwise indicated
2. Orientation marks are indicated as follows:

A Miniature Relay with 1-pole 5 A Switching Capability and 10 kV Impulse Withstand Voltage

- Highly efficient magnetic circuit for high sensitivity (200 mW).

■ Compact, slim, yet provides 10 kV impulse withstand voltage (between coil and contacts).

\square Standard model conforms to UL, CSA and VDE standards
Tracking resistance: CTI>250

- Contains no lead inside and features
cadmium-free contacts ensuring environmentfriendly use

Ordering Information

Classification	Contact form	Enclosure ratings	Model
Standard	SPST-NO	Flux protection	G5NB-1A

Note: When ordering, add the rated coil voltage to the model nur
When ordering, add the rated
Example: G5NB-1A-E 12 VDC Rated coil voltage

Model Number Legend
G5NB- $\square \square-E \square$ VDC

1. Number of Poles
2. Rated Coil Voltage

5, 12, 18, 24 VDC
2. Contact Form

A: SPST-NO
Application Examples
Water heaters, refrigerators, air conditioners, and small electric
appliances

Specifications

- Coil Ratings

Rated voltage	5 VDC	12 VDC	18 VDC	24 VDC
Rated current	40.0 mA	16.7 mA	11.1 mA	8.3 mA
Coil resistance	125Ω	720Ω	$1,620 \Omega$	$2,880 \Omega$
Must operate voltage	75% max. of rated voltage			
Must release voltage	10% min. of rated voltage			
Max. voltage	170% of rated voltage (at $23^{\circ} \mathrm{C}$)			
Power consumption	Approx. 200 mW			

Note: The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
The "Max. voltage" is the maximum voltage that can be applied to the relay coil.

- Contact Ratings

Load	Resistive load $(\cos \phi=1)$
Rated load	5 A at $250 \mathrm{VAC}, 3 \mathrm{~A}$ at 30 VDC
Max. switching voltage	$250 \mathrm{VAC}, 30 \mathrm{VDC}$
Max. switching current	5 A
Max. switching power	$1250 \mathrm{VA}, 90 \mathrm{~W}$
Failure rate (reference value)	10 mA at 5 VDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation (with an operating frequency of 120 operations $/ \mathrm{min}$)

■ Characteristics

Contact resistance (See note 2.)	$100 \mathrm{~m} \Omega$ max.
Operate time	10 ms max.
Release time	10 ms max.
Insulation resistance (See note 3.)	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC)
Dielectric strength	$4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$10,000 \mathrm{~V}(1.2 \times 50 \mathrm{~ms})$ between coil and contacts
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 5,000,000 operations min. Electrical: 100,000 operations min (5 A at 250 VAC), 200,000 operations min. (3 A at 30 VDC)
Failure rate \mathbf{P} level (reference value) (See note 4.)	$5 \mathrm{VDC}, 10 \mathrm{~mA}$
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: 5\% to 85\%
Weight	Approx. 4 g

Note: 1. The data shown above are initial value
2. Measurement conditions: $5 \mathrm{VDC}, 1 \mathrm{~A}$, voltage drop method.
3. Measurement conditions: Measured at the same points as the dielectric strength using a $500-$ VDC ohmmeter.
4. This value is for a switching frequency of 120 operations/minute.

- Approved Standards

UL508 (File No. 41515)

Coil ratings	Contact ratings
5 to 24 VDC	$5 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive)
	$5 \mathrm{~A}, 125 \mathrm{VAC}$ (resistive)
	$5 \mathrm{~A}, 250 \mathrm{VAC}$ (general use)

CSA C22.2 (No. 0, No. 1, No. 14) (File No. LR31928)

Coil ratings	Contact ratings
5 to 24 VDC	$5 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive)
	$5 \mathrm{~A}, 125 \mathrm{VAC}$ (resistive)
	$5 \mathrm{~A}, 250 \mathrm{VAC}$ (general use)

■ Actual Load Life (Reference Values)

1. $120-\mathrm{VAC}$ motor and lamp load ($2.5-\mathrm{A}$ surge and 0.5 -A norma): 250,000 operations min.(at $23^{\circ} \mathrm{C}$)
2. 160 -VDC valve load (with varistor) ($0.24-\mathrm{A}$): 250,000 operations min.(at $23^{\circ} \mathrm{C}$)

Engineering Data

Dimensions
Note: All units are in millimeters unless otherwise indicated.

Precautions
■ Correct Use
HANDLING
The enclosure rating of the G5NB is for flux protection. Do not use immersion-cleaning.

Compact Single-pole Relay for Switching 5 A (Normally Open Contact), Fan Control of Air Conditioners, and Heating Control of Small Appliances.
■ Environment-friendly, Pb-free.
■ Compact SPDT Relay with high insulation.

- Incorporates a normally open contact that switches 5 A max.
- Ensures a withstand impulse voltage of $8,000 \mathrm{~V}$ between the coil and contacts
Conforms to UL and CSA.
- UL508
- CSA C22.2 (No. 14
- VDE approval is in progress

Note: The G5S-1 will be discontinued at the end of March 2004 Please change to the G5SB (Environment-friendly Relay).

Ordering Information

Classification	Contact form	Enclosure ratings	Model
Standard	SPDT-NO	Fully sealed	G5SB-14

Note: When ordering, add the rated coil voltage to the model number. Example: G5SB-14 12 VDC

- Rated coil voltage

Model Number Legend
G5SB- $\square \square \square \square$ VDC

1. Number of Poles
2. Rated Coil Voltage

1: 1 pole (SPDT)
5, 9, 12, 24 VDC
2. Protective Structure

4: Fully sealed
Specifications

- Coil Ratings

Rated voltage	5 VDC	9 VDC	12 VDC	24 VDC
Rated current	80 mA	44.4 mA	33.3 mA	16.7 mA
Coil resistance	63Ω	202Ω	$1,440 \Omega$	
Must operate voltage	75% max. of rated voltage			
Must release voltage	5% min. of rated voltage			
Max. voltage	110% of rated voltage			
Power consumption	Approx. 400 mW			

- Contact Ratings

Load	Resistive Load
Rated load	$3 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 125 VAC $5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 125 VAC $5 \mathrm{~A}(\mathrm{NO})$ at 250 VAC $3 \mathrm{~A}(\mathrm{NC})$ at 250 VAC $5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 30 VDC
Contact material	Ag alloy
Rated carry current	5 A (NO)/3 A (NC)
Max. switching voltage	$250 \mathrm{VAC}, 30 \mathrm{VDC}$
Max. switching current	$5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC)}$
Max. switching capacity	$1,250 \mathrm{VA}, 150 \mathrm{~W}$ (NO) 750 VA, 30 W (NC)
Min. permissible load	10 mA at 5 VDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation (with an operating frequency of 120 operations $/ \mathrm{min}$)

- Characteristics

Contact resistance (see note 2)	$100 \mathrm{~m} \Omega$ max.
Operate time (see note 3)	10 ms max.
Release time (see note 3)	5 ms max.
Insulation resistance (see note 4)	1,000 M Ω min.
Dielectric strength	$4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	8 kV ($1.2 \times 50 \mu \mathrm{~s}$)
Vibration resistance	Destruction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude) Malfunction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100 G) Malfunction: Energized: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10 G) Non-energized: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10 G)
Endurance (see note 5)	Mechanical: 5,000,000 operations (18,000 operations per hour) Electrical: 200,000 operations: 3 A (NO)/3 A (NC) at 125 VAC resistive load 50,000 operations: $5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 125 VAC resistive load 50,000 operations: $5 \mathrm{~A}(\mathrm{NO})$ at 250 VAC resistive load 10,000 operations: $3 \mathrm{~A}(\mathrm{NC})$ at 250 VAC resistive load 10,000 operations: $5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 30 VDC resistive load Switching frequency: 1,800 operations per hour
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with no icing or condensation
Ambient humidity	Operating: 5% to 95%
Weight	Approx. 6.5 g

Note: 1. The data shown above are initial values.
2. The contact resistance is possible with 1 A applied at 5 VDC using a fall-of-potential method.
3. The operating time is possible with the operating voltage imposed with no contact bounce at an ambient temperature of $23^{\circ} \mathrm{C}$ 4. The insulation resistance is possible between coil and contacts and between contacts of the same polarity at 500 VDC.
5. The electrical durability data items shown are possible at $23^{\circ} \mathrm{C}$

- Approved Standards

UL508 (File No. E41515)/CSA C22.2 (No.14) (File No. LR31928)

Model	Coil ratings	Contact ratings	No. of Test Operations
G5SB	5 to 24 VDC	3 A, 125 VAC (resistive) NC only 2 A, 125 VAC (resistive) NC only 5 A, 250 VAC (resistive) NO only 3 A, 250 VAC (resistive) NO only 5 A, 30 VDC (resistive) NO only	6,000

Electrical endurance tests are performed at $70^{\circ} \mathrm{C}$
Dimensions
Note: All units are in millimeters unless otherwise indicated.

Terminal Arrangement Internal Connections (Bottom View)

(No coll polarty)

Note: Values in parentheses are average values

Application Examples

- Refriger

- Washing Machine
- Air Conditioner
- Others

Slim, Miniature Relay, Capable of Relaying Programmable Controller and

Temperature Controller Outputs

- Slim 5-mm width, and miniature size.
- Reduced mounting area ideal for high-density mounting
- Highly efficient magnetic circuit for high sensitivity (40% higher than the G6D, with power consumption of 120 mW).
■ Satisfies IEC61131-2 and IEC61010 requirements

\square SIL (single-in-line) terminal pitch.
■ UL, CSA approved. VDE approval pending
Ordering Information

Classification	Contact form	Enclosure ratings	
Standard	SPST-NO	Fully sealed	G6M-1A

Note: When ordering, add the rated coil voltage to the model number.

$$
\text { Example: G6M-1A } 12 \text { VDC }
$$

Rated coil voltage

Model Number Legend
G6M $-\frac{\square}{1} \frac{\square}{3}$ VDC

1. Number of Poles
2. Rated Coil Voltage

1: 1 pole
5, 12, 24 VDC
2. Contact Form

A: SPST-NO
Specifications

- Coil Ratings

Rated voltage	5 VDC	12 VDC	24 VDC
Rated current	24 mA	10 mA	$4,800 \Omega$
Coil resistance	208Ω	$1,200 \Omega$	
Must operate voltage	75% max. of rated voltage		
Must release voltage	5% min. of rated voltage		
Max. voltage	160% of rated voltage (at $23^{\circ} \mathrm{C}$)		
Power consumption	Approx. 120 mW		

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$,
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$
3. The maximum allowable voltage is the maximum possible value of the voltage that can be applied to the relay coil. It is not the
4. The must operate voltage is 72% or less of the rated voltage if the relay is mounted vertically and the terminals are pointed downwards.

■ Contact Ratings

Rated load	3 A at $250 \mathrm{VAC}, 3 \mathrm{~A}$ at 30 VDC
Rated carry current	5 A
Max. switching voltage	$270 \mathrm{VAC}, 125 \mathrm{VDC}$
Max. switching current	5 A
Max. switching power	$750 \mathrm{VAC}, 90 \mathrm{~W}$
Max. permissable load	10 mA at 5 VDC (at 120 operations/min)

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

■ Characteristics

Contact resistance	$100 \mathrm{~m} \Omega$ max.
Operate time	10 ms max.
Release time	5 ms max.
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC$)$
Dielectric strength	3,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$5,080 \mathrm{~V}(1.2 \times 50 \mu \mathrm{~s})$ between coil and contacts
Vibration resistance	Destruction: 10 to $55 \mathrm{~Hz}, 2.5-\mathrm{mm}$ single amplitude ($5.0-\mathrm{mm}$ double amplitude) Malfunction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 20,000,000 operations min. (at 18,000 operations/hr) Electrical: 100,000 operations min. (3 A at 250 VAC/30 VDC, resistive load)
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85%
Weight Approx.	4 g

- Approved Standards

UL508 (File No. E41515)/CSA C22.2 (No.14) (File No. LR31928)

Model	Coil ratings	Contact ratings
G6M-1A	4.5 to 24 VDC	$5 \mathrm{~A}, 250 \mathrm{VAC}$ (resistive load, 6,000 operations)
		$5 \mathrm{~A}, 24 \mathrm{VDC}$ (resistive load, 6,000 operations)
$3 \mathrm{~A}, 25 \mathrm{VAC}$ (general use, 100,000 operations)		
$3 \mathrm{~A}, 24 \mathrm{VDC}$ (general use, 100,000 operations)		

Engineering Data

Dimensions
G6M-1A

Precautions

bASIC INFORMATION

Before actually committing any component to a massproductionsituation, OMRON strongly recommends situational testing, in as close to actual production situations as possible.
One reason is to confirm that the product will still perform as expected after surviving the many handling and mounting processes involved in mass production. Also, even though OMRON relays are individually tested a number of times, and each meets strict requirements, a certain testing tolerance is components, each depends upon the rated performance thresholds of the other components. Thus, the overal performance tolerance may accumulate into undesirable levels. To avoid problems, always conduct tests under the actual application conditions.

General

To maintain the initial characteristics of a relay, exercise care that it is not dropped or mishandled. For the same reason, do not remove the case of the relay; otherwise, the characteristics may degrade. Avoid using the relay in an atmosphere containing sulfuric acid $\left(\mathrm{SO}_{2}\right)$, hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$, or other corrosive gases.
Do not continuously apply a voltage higher than the rated maximum voltage to the relay. Never try to operate the relay at voltage and a current other than those rated.
Do not use the relay at temperatures higher than that specified in the catalog or data sheet.

Slim, Miniature Relay, Capable of Relaying Programmable Controller and Temperature Controller Outputs

Slim and miniature: $17.5 \times 6.5 \times 12.5 \mathrm{~mm}$ ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$).

- Reduced bottom area (45\% smaller than the G6B's bottom area) ideal for high-density mounting.
Switches 5 A at 250 VAC/30 VDC
- Allows 300,000 operations with a 2-A load at 250 VAC or 30 VDC

■ Actual load switching capability equals the
G6B's capability.

- Washable construction

Ordering Information

Classification	Contact form	Enclosure ratings	Model
Standard	SPST-NO	Fully sealed	G6D-1A

Note: When ordering, add the rated coil voltage to the model number. Example: G6D-1A 12 VDC

Rated coil voltage
Model Number Legend
G6D $-\frac{\square}{1} \frac{\square}{3}$ VDC

1. Number of Poles
2. 1: 1 pole
3. Rated Coil Voltage
4. Contact Form
\square Accessories (Order Separately)

Connecting Socket	P6D-04P

Specifications

- Coil Ratings

Rated voltage	5 VDC	12 VDC	24 VDC
Rated current	40 mA	16.7 mA	8.3 mA
Coil resistance	125Ω	720Ω	$2,880 \Omega$
Must operate voltage	70% max. of rated voltage		
Must release voltage	10% min. of rated voltage		
Max. voltage	160% of rated voltage		
Power consumption	Approx. 200 mW		

Note: The must operate voltage is 75% or less of the rated voltage if the relay is mounted upside down.

- Contact Ratings

Rated load	5 A at $250 \mathrm{VAC}, 5 \mathrm{~A}$ at 30 VDC , resistive load (cos $\sigma=1$)
Rated carry current	5 A
Max. switching voltage	$250 \mathrm{VAC}, 30 \mathrm{VDC}$
Max. switching current	5 A
Max. switching power	$1,250 \mathrm{VA}, 150 \mathrm{~W}$
Failure rate (reference value)	10 mA at 5 VDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

- Characteristics

Contact resistance (see note 2)	$100 \mathrm{~m} \Omega$ max.
Operate time	10 ms max.
Release time	$5 \mathrm{~ms} \mathrm{max}$.
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC$)$
Dielectric strength	$3,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$6,000 \mathrm{~V}(1.2 \times 50 \mu \mathrm{~s})$ between coil and contacts
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: Energized: $100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance (see note 5)	Mechanical: 20,000,000 operations min. (at 18,000 operations/hr) Electrical: 100,000 operations min. (5 A at $250 \mathrm{VAC} / 30 \mathrm{VDC}$, resistive load) 300,000 operations min. (2 A at $250 \mathrm{VAC} / 30 \mathrm{VDC}$, resistive load)
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85%
Weight	Approx. 3 g

- Approved Standards

UL508 (File No. E41515)/CSA C22.2 No. 14 (File No. LR31928)

Model	Coil ratings	Contact Ratings
G6D-1A	5 to 24 VDC	$5 \mathrm{~A}, 250 \mathrm{VAC}$ $5 \mathrm{~A}, 30 \mathrm{VDC}$

Engineering Data

Maximum Switching Power

Switching voltage (V)

Endurance

Switching current (A)

Ambient Temperature vs Maximum Coil Voltage

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

- Reference Data

Number of operations ($\times 10^{4}$)

Number of operations ($\times 10^{4}$)

Number of operations ($\times 10^{4}$)

Actual Load Test Data

Number of operations ($\times 10^{4}$)

Number of operations ($\times 10^{4}$) With OMRON's MA415A Contactor
$(40 \mathrm{~mA}$ at 200 VAC)

Number of operations (x 104)

Dimensions
Note: 1. All units are in millimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: \square

Precautions
More than two relays can be closely mounted right side up as SOCKET MOUNTING HEIGHT shown in the following illustration.

Current flow:
5 A max.
More than two relays can be closely mounted upside down as shown in the following illustration

When mounting the relay, insert it into the socket as vertically as possible so that the relay terminals contact securely with the contact pins on the socke
The P6D is flux-resistive. Do not wash the P6D with water. Dismount the relay from the socket before soldering the socket to

Sub-miniature Relay that Switches

 up to 5 A■ Sub-miniature: $20 \times 10 \times 10 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$.
■ Low power consumption: 200 mW .
■ Unique moving loop armature reduces relay size, magnetic interference, and contact bounce time.

- Single- and double-winding latching types also available.

Ordering Information

Classification	Contact form	Straight PCB	Self-clinching PCB
Single-side stable	SPST-NO	G6B-1114P-US	G6B-1114C-US
	SPST-NO+SPST-NC	G6B-2114P-US	G6B-2114C-US
		GPST-NO	G6B-2214P-US
	GPST-NC	G6B-2214C-US	
Single-winding latching	SPST-NO	G6B-2014C-US	
Double-winding latching	SPST-NO	G6BK-1114P-US	G6BU-1114C-US
High-capacity single-side stable	SPST-NO	G6BK-1114C-US	

Note: When ordering, add the rated coil voltage to the model number. Example: G6B-1114P-US 12 VDC

Model Number Legend

$$
\text { G6B } \frac{\square}{1}-\frac{\square}{2} \frac{\square}{3} \frac{\square}{4} \frac{\square}{5}-\frac{\square}{6} \frac{\square}{7} \text { VDC }
$$

1. Relay Function

None: Single-side stable
U : Single-winding latching
2. K: Double-winding latching
2. Contact Form
21:
22:
SPST-NO
DPST-NO
3. Contact Type

1: Standard
4. Enclosure Ratings

4: Fully sealed
$\begin{array}{ll}\text { 20: DPST-NC } \\ \text { 11: } & \\ \text { SPST-NO }\end{array}$

- Accessories (Order Separately)

Back Connecting Sockets

Applicable relay	Back connecting socket ${ }^{\star}$
G6B(U)-1114P-US	P6B-04P
G6BK-1114P-US	P6B-06P
G6B-2114P-US	P6B-26P
G6B-1174P-US	P6B-04P

Removal Tool	P6B-Y1
Hold-down Clips	P6B-C2

PCB Power Relay - G6B
omROn
Specifications

- Coil Ratings

Item	SPST-NO					SPST-NO + SPST-NC, DPST-NO, DPST-NC				
Rated voltage	3 VDC	5 VDC	6 VDC	12 VDC	24 VDC	3 VDC	5 VDC	6 VDC	12 VDC	24 VDC
Rated current	67 mA	40 mA	33.3 mA	16.7 mA	8.3 mA	100 mA	60 mA	50 mA	25 v	12.5 mA
Coil resistance	45Ω	125Ω	180Ω	720Ω	2,880 Ω	30Ω	83.3Ω	120Ω	480Ω	1,920 Ω
Coil inductance Armature OFF	0.20	0.28	0.31	1.2	4.9	-	-	-	-	-
(H) (ref. value) Armature ON	0.18	0.26	0.28	1.1	4.1	-	-	-	-	-
Must operate voltage	70\% max. of rated voltage					80\% max. of rated voltage				
Must release voltage	10\% min. of rated voltage									
Max. voltage	160% of rated voltage (at $23^{\circ} \mathrm{C}$)					140% of rated voltage (at $23^{\circ} \mathrm{C}$)				
Power consumption	Approx. 200 mW					Approx. 300 mW				

Single-winding Latching Type

Rated voltage		3 VDC	5 VDC	6 VDC	12 VDC	24 VDC
Rated current		67 mA	40 mA	33.3 mA	16.7 mA	8.3 mA
Coil resistance		45Ω	125Ω	180Ω	720Ω	2,880 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.20	0.28	0.31	1.2	4.9
	Armature ON	0.18	0.26	0.28	1.1	4.1
Must operate voltage		70\% max. of rated voltage				
Must release voltage		70\% min. of rated voltage				
Max. voltage		160% of rated voltage (at $23^{\circ} \mathrm{C}$)				
Power consumption		Approx. 200 mW				

Double-winding Latching Type

Rated voltage			3 VDC	5 VDC	6 VDC	12 VDC	24 VDC
Set coil	Rated current		93.2 mA	56 mA	46.8 mA	23.3 mA	11.7 mA
	Coil resistance		32.2Ω	89.2Ω	128.5Ω	515Ω	2,060 Ω
	Coil inductance	Armature OFF	0.11	0.15	0.18	0.52	1.2
	(H) (ref. value)	Armature ON	0.11	0.15	0.18	0.52	1.2
Reset coil	Rated current		93.2 mA	56 mA	46.8 mA	23.3 mA	11.7 mA
	Coil resistance		32.2Ω	89.2Ω	128.5Ω	515 ת	2,060 Ω
	Coil inductance	Armature OFF	0.11	0.15	0.18	0.52	1.2
	(H) (ref. value)	Armature ON	0.11	0.15	0.18	0.52	1.2
Must set voltage			70\% max. of rated voltage				
Must reset voltage			70\% min. of rated voltage				
Max. voltage			130% of rated voltage (at $23^{\circ} \mathrm{C}$)				
Power consumption			Set coil: Approx. 280 mW Reset coil: Approx. 280 mW				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$,
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

- Contact Ratings

Item	SPST-NO		SPST-NO + SPST-NC, DPST-NO, DPST-NC	
Load	Resistive load $(\cos \varnothing=1)$	Inductive load $(\cos \varnothing=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load $(\cos \varnothing=1)$	$\begin{aligned} & \text { Inductive load } \\ & (\cos \varnothing=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) \end{aligned}$
Rated load	5 A at 250 VAC; 5 A at 30 VDC	2 A at 250 VAC ; 2 A at 30 VDC	5 A at 250 VAC; 5 A at 30 VDC	1.5 A at 250 VAC; 1.5 A at 30 VDC
Contact material	AgCdO			
Rated carry current	5 A			
Max. switching voltage	380 VAC, 125 VDC			
Max. switching current	5 A			
Max. switching power	1,250 VA, 150 W	$500 \mathrm{VA}, 60 \mathrm{~W}$	1,250 VA, 150 W	$375 \mathrm{VA}, 80 \mathrm{~W}$
Failure rate (reference value)	10 mA at 5 VDC			

Item	SPST-NO (High-capacity)	
Load	Resistive $\operatorname{load}(\cos \varnothing=1)$	Inductive load ($\cos \sigma=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$
Rated load	8 A at $250 \mathrm{VAC} ; 5 \mathrm{~A}$ at 30 VDC	2 A at $250 \mathrm{VAC} ; 2 \mathrm{~A}$ at 30 VDC
Contact material	AgCdO	
Rated carry current	8 A	
Max. switching voltage	$380 \mathrm{VAC}, 125 \mathrm{VDC}$	
Max. switching current	8 A	
Max. switching power	$2,000 \mathrm{VA}, 150 \mathrm{~W}$	
Failure rate (reference value)	10 mA at 5 VDC	

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operatio
■ Characteristics

Contact resistance	$30 \mathrm{~m} \Omega$ max.
Operate (set) time	$10 \mathrm{~ms} \mathrm{max}$. (mean value: 1 -pole approx. 3 ms , 2 -pole approx. 4 ms)
Release (reset) time	Single-side stable types: 10 ms max. (mean value: 1 -pole approx. $1 \mathrm{~ms}, 2$-pole approx. 2 ms) Latching types: 10 ms max. (mean value: approx. 3 ms)
Min. set/reset signal width	Latching type: 15 ms min. (at $23^{\circ} \mathrm{C}$)
Max. operating frequency	Mechanical: 18,000 operations/hr Electrical: 1,800 operations/hr (under rated load)
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC, at 250 VDC between set coil and reset coil)
Dielectric strength	3,000 VAC (Latching types: $2,000 \mathrm{VAC}$), $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity $250 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between set and reset coils $2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: Single-side stable: $100 \mathrm{~m} / \mathrm{s}^{2}$; Latching: $300 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 50,000,000 operations min. (at 18,000 operations/hr) Electrical: 100,000 operation min. (at 1,800 operations/hr)
Ambient temperature	Operating: - $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5% to 85%
Weight	Double-winding latching: Approx. 3.7 g High-capacity: Approx. 4.6 g Double pole: Approx. 4.5 g Other: Approx. 3.5 g

Note: The data shown above are initial values

■ Approved Standards
UL508 (File No. E41643)/CSA C22.2 No. 14 (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings
G6B-1114P-US G6B-1114C-US G6BU-1114P-US G6BU-1114C-US G6BK-1114P-US G6BK-1114C-US	SPST-NO	3 to 24 VDC	$5 \mathrm{~A}, 250$ VAC (general use) 5 A, 30 VDC (resistive load)
G6B-1174P-US G6B-1174C-US			8 A, 250 VAC (general use) 8 A, 30 VDC (resistive load)
G6B-2114P-US G6B-2114C-US G6B-2214P-US G6B-2214C-US G6B-2014P-US G6B-2014C-US	SPST-NO + SPST-NC DPST-NO DPST-NC		$5 \mathrm{~A}, 250$ VAC (general use) 5 A, 30 VDC (resistive load)

Engineering Data
G6B-1114P-US

G6B-2114P-US, G6B-2214P-US G6B-2014P-US
Maximum Switching Power

Switching voltage (V)

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated 1. All units are in milimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: $\square \square$

Terminal Arrangement/Interna Connections (Bottom View) G6B-1114P, -1114C

10
70
0

G6B-1114C-US
G6BU-1114C-US

G6BU-1114P,-1114C

Mounting Holes (Bottom View)

G6B-1174C-US

Mounting Holes (Bottom View) G6B-1114P, -1114 C
G6BU-1114P, -1114 C

- Clearance between contact terminals of the same polarity: 1.5 mm min.
- Meets the requirements of European UPS standards.

Note:UPS: Uninterruptible power systems

- Conforms to VDE0435 (VDE approval: C250 insulation grade), UL508, CSA22.2.

■ Meets VDE0700 requirements for household
products according to VDE0110

- Cadmium-free contacts ensuring environment friendly use.
- Tracking resistance: CTI > 250 V .

Ordering Information

Contact form	Rated coil voltage	Model number
DPST-NO	12 VDC 24 VDC	G2RG-2A4

Model Number Legend
G2RG- \square
123

1. Number of Poles

2: 2 poles
4: Plastic sealing
2. Contact Form

A: N.O. contact
Specifications
■ Coil Ratings

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release Voltage	Maximum allowable voltage	Power consumption
12 VDC	66.6 mA	180Ω	80% max.	10% min.	140% (at $23^{\circ} \mathrm{C}$)	Approx. 800 mW
24 VDC	33.3 mA	720Ω				

Note: 1. The rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
2. The operating characteristics given in the above table are for a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum allowable voltage is the maximum possible value of the voltage that can be applied to the relay coil

[^0]
- Contact Ratings

Load	Resistive load
Contact mechanism	Single
Contact material	Ag alloy
Rated load	$250 \mathrm{VAC}, 8 \mathrm{~A}$
Rated carry current	8 A
Maximum switching voltage	$380 \mathrm{VAC}, 125 \mathrm{VDC}$
Maximum switching current	8 A
Failure rate (P level, reference value) (See note.)	$5 \mathrm{VDC}, 10 \mathrm{~mA}$

Note: This value is for a switching frequency of 120 operations/min

- Characteristics

Contact resistance (See note 1.)		$100 \mathrm{~m} \Omega$ max.
Operate time		15 ms max.
Release time		5 ms max.
Maximum switching frequency	Mechanical	18,000 operations/hr
	Electrical	1,800 operations/hr (under rated load)
Insulation resistance (See note 2.)		$1,000 \mathrm{M} \Omega$ min. (at 500 VDC)
Dielectric strength		$5,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $3,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of the same polarity
Impulse withstand voltage		$10 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})$
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$ when energized
Endurance	Mechanical	1,000,000 operations min. (at 18,000 operations/hr)
	Electrical	10,000 operations min. (at 1,800 operations/hr under rated load)
Ambient operating temperature		-40 to $70{ }^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight		Approx. 17.2 g

Note 1. The above values are initial values (at an ambient temperature of $23^{\circ} \mathrm{C}$.)
2. Measurement conditions: $5 \mathrm{VDC}, 1 \mathrm{~A}$, voltage-drop method
3. Measurement conditions: Measured with a $500-\mathrm{VDC}$ megohmmeter at the same places as the dielectric strength.

- Approved Standards

The approved rated values for international standards are different to the individually specified characteristic values. Be sure to confirm that required standards are satisfied before actual use
UL508 (File No. E41643)

Model	Contact form	Coil rating	Contact rating
G2RG-2A4	DPST-NO	12 to 24 VDC	$8 \mathrm{~A}, 250 \mathrm{VAC}$ (general use)
CSA C22.2 No. 14 (File No. LR31928)			
Model	Contact form	Coil rating	Contact rating
G2RG-2A4	DPST-NO	12 to 24 VDC	$8 \mathrm{~A}, 250 \mathrm{VAC}$ (general use)
VDE0435 (Approval No. 6166)			
Model	Contact form	Coil rating	Contact rating
G2RG-2A4	DPST-NO	12, 24 VDC	$\begin{aligned} & 8 \mathrm{~A}, 250 \mathrm{VAC} \\ & (\cos \phi=1) \\ & \hline \end{aligned}$

Engineering Data

Maximum Switching Capacity

Ambient Temperature vs Maximum Allowable Voltage

Note: The maximum allowable voltage is the maximum possible value of the voltage that can be applied to the relay coil.

Dimensions

PCB Mounting Hole
(Bottom View)

Terminal Arrangement/ Internal Connectio (Bottom View)

(The coil has no polarity.)
$7^{-3.4}$
10_{6}

Precautions

- Correct Use

The G2RG-2A4 has the same terminal arrangement as the G2R-2AA but the switching capacity and electrical endurance are
different. Confirm that correct operation is possible in the actual different. Confirm that correct operation is possible in the actual operating conditions before using in applications.

Compact, High Isolation Relay

■ Compact single pole relay with high isolation between coil and contacts.
■ Up to 10 A 250 VAC switching on the NO contacts.

- Ensures a withstand impulse voltage of $8,000 \mathrm{~V}$ between the coil and contacts.
■ Low coil power consumption
(SPST-NO: 200 mW , SPDT: 400 mW .
- UL class F coil insulation.
- UL, CSA and VDE approvals

■ Ideal for appliance and HVAC controls.

- Tracking resistance: CTI > 250
- Contains no lead inside and features
 cadmium-free contacts ensuring environmentally friendly use.

Ordering Information
To Order: Select the part number and add the desired coil voltage rating (e.g. G5Q-14-EU-DC12)

Classification		Enclosure rating	Part number
Single contact, Class F coil	SPST-NO	Vented	G5Q-1A-EU
		Sealed	G5Q-1A4-EU
	SPDT	Vented	G5Q-1-EU
		Sealed	G5Q-14-EU

Specifications

- Coil Ratings

Rated voltage (V)		Rated current	Coil resistance ($\Omega)$	Pick-up voltage	Drop-out Voltage	Maximum voltage	$\begin{aligned} & \text { Power } \\ & \text { consumption } \\ & (\mathrm{mW}) \end{aligned}$
SPDT	DC5	80	63	75\% of max.	5\% of max.	190% at $23^{\circ} \mathrm{C}$	400
	DC12	33.3	360				
	DC24	16.7	1440				
SPST-NO	DC5	40	125				200
	DC12	16.7	720				
	DC24	8.3	2880				

Note: Rated current and coil resistance are measured at 23C with a tolerance of 10%.

[^1]
■ Contact Ratings

■ Characteristics

Contact resistance (see note 2)	$100 \mathrm{~m} \Omega$ max.
Operate time	10 ms max.
Release time	5 ms max.
Insulation resistance (see note 3)	$1,000 \mathrm{M} \Omega \mathrm{min}$.
Dielectric strength	$4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$8 \mathrm{kV}(1.2 \times 50 \mathrm{~ms})$ between coil and contacts
Vibration resistance	Destruction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours Malfunction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 5 minutes
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approximately 10G)
Life expectancy (see note 4)	Mechanical 10,000,000 operations (18,000 operations per hour)
	Electrical 200,000 operations: $3 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 125 VAC resistive load 100,000 operations: 3 A (NO)/3 A (NC) at 250 VAC $5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 30 VDC resistive load 25,000 operations: $10 \mathrm{~A}(\mathrm{NO})$ at 250 VAC (900 operations per hour: 1 sec ON/3 sec OFF)
	Switching frequency: 1,800 operations per hour: 1 sec ON/1 SEC OFF
Ambient temperature	Operating \& storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating \& storage: 5% to 85%

Note: 1. The data shown above are initial value.
2. The contact resistance is possible with 1 A applied at 5 VDC using a fall-of-potential method
3. The insulation resistance is possible between coil and contacts and between contacts of the same polarity at 500 VDC.
4. The electrical life data items shown are possible at $23^{\circ} \mathrm{C}$.

PCB Power Relay - G5Q-EU
■ UL508 (File No. E41515)
CSA C22.2 No. 14 (File No. LR31928)

Model	Coil ratings		Contact ratings	
		NO contacts	NO contacts	
	$5-48 \mathrm{VDC}$	$10 \mathrm{~A}, 250 \mathrm{VAC}$ resistive	$3 \mathrm{~A}, 250 \mathrm{VAC}$ resistive	
		$10 \mathrm{~A}, 30 \mathrm{VDC}$ resistive	$3 \mathrm{~A}, 30 \mathrm{VDC}$ resistive	
		$4 \mathrm{~A}, 120 \mathrm{VAC}$ resistive,	$4 \mathrm{LRA}, 2 \mathrm{FLA}, 120 \mathrm{VAC}$ definite	
		100,000 ops.		
		$4 \mathrm{FLA}, 4 \mathrm{LRA} 120 \mathrm{VAC}$, definite	purpose, 100,000 operations.	
		purpose, 100,000 operations.		

Note: Ratings for both NO contacts and NC contacts are given at $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$.
VDE (Reg. No. 125314)

Model	Coil ratings	Contact ratings
G5Q-EU	$5,12,24 \mathrm{VDC}$	$10 \mathrm{~A}, 250 \mathrm{VAC} \cos \phi=1$ (NO)
		$5 \mathrm{~A}, 30 \mathrm{VDC}$ LR $=0 \mathrm{Oms}$ (NO)
		$3 \mathrm{~A}, 30 \mathrm{VDC} \mathrm{LR}=0 \mathrm{~ms}$ (NC)

Engineering Data

- MAX. SWITCHING CAPACITY

Dimensions
Note: All units are in millimeters unless otherwise indicated.
■ G5Q-EU SPDT

Terminal Arrangement
Internal Internal Connect
(Bottom View)

■ SPST-NO

PCB Mounting Holes
(Bottom View) (toterance: View) $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/ Internal Connection
(Bottom View)

Precautions

```
\ CAUTION
part of the socket when power is supplied to the Relay
Otherwise, an electric shock may occur,

\section*{Heavy-duty Miniature Relay}

■ Incorporates environment-friendly, cadmiumfree contacts
■ Variety of contact forms: SPDT or SPST-NO (continuous current rating: 8 A )
- Mechanical and electrical characteristics comply with VDE0435.
- Satisfies VDE0700 requirements with a dielectric strength of
4 kV at a distance of 8 mm .
- Satisfies \(\mathrm{C} / 250\) insulation requirements of VDE0110.
- Tracking resistance: CTI>250
- Conforms to class II, part 1 of VDE0106

Ordering Information
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Classification} & \multirow[t]{2}{*}{Enclosure ratings} & \multirow[t]{2}{*}{Contact material} & \multicolumn{2}{|r|}{Contact form} \\
\hline & & & SPST-NO & SPDT \\
\hline \multirow[t]{5}{*}{Standard} & \multirow[t]{5}{*}{Fully sealed} & AgNi + gold plating ( 0.35 ) & G6RN-1A & G6RN-1 \\
\hline & & AgNi & G6RN-1A-ANI & G6RN-1-ANI \\
\hline & & AgCdO + gold plating (0.35 \(\mu\) ) & G6RN-1A-ACD & G6RN-1-ACD \\
\hline & & AgCdO & G6RN-1A-CDM & G6RN-1-CDM \\
\hline & & AgNi + gold plating ( 4 ) & G6RN-1A-AP4 & G6RN-1-AP4 \\
\hline
\end{tabular}

Note: When ordering, add the rated coil voltage to the model number. Example: G6RN-1A 24 VDC
\[
{ }^{C} \text { Rated coil voltage }
\]

Model Number Legend
G6RN \(-\frac{\square}{1} \frac{\square}{2}-\frac{\square}{3} \frac{\square}{4}\) VDC
1. Number of Poles
\[
\text { 1: } 1 \text { pole }
\]
2. Contact Form

None: SPDT
A: \(\quad\) SPST-NO
3. Contact Material

None: AgNi + gold plating ( 0.35 H)
ANI: AgNi
ACD: AgCdO + gold plating \((0.35 \mu)\)
ACD: AgCdO
CDM: AgCdO
AP4: AgNi + gold plating ( \(4 \mu\) )
4. Rated Coil Voltage

5, 12, 24, 48 VDC

Specifications

\section*{- Coil Ratings}
\begin{tabular}{|l|l|l|l|l|}
\hline Rated voltage & 5 VDC & 12 VDC & 24 VDC & 48 VDC \\
\hline Rated current & 44 mA & 18.3 mA & 9.2 mA & 5.2 mA \\
\hline Coil resistance & \(114 \Omega\) & \(655 \Omega\) & \(2,620 \Omega\) & \(9,210 \Omega\) \\
\hline Must operate voltage & \(70 \%\) max. of rated voltage & \\
\hline Must release voltage & \(10 \%\) min. of rated voltage & \\
\hline Max. voltage & \(110 \%\) of rated voltage at max. temperature (at \(85^{\circ} \mathrm{C}\) ) & \\
\hline Power consumption & Approx. 220 mW & Approx. 250 mW & \\
\hline
\end{tabular}

Note: 1. The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 10 \%\).
2. Operating characteristics are measured at a coil temperature of \(23^{\circ} \mathrm{C}\).

\section*{- Contact Ratings}
\begin{tabular}{|l|l|}
\hline Load & Resistance load (cos \(\varnothing=1\) ) \\
\hline Rated load & 8 A at \(250 \mathrm{VAC}: 5 \mathrm{~A}\) at 30 VDC \\
\hline Rated carry current & 8 A \\
\hline Max. switching voltage & \(250 \mathrm{VAC} ; 30 \mathrm{VDC},(400 \mathrm{VAC})\) (see note) \\
\hline Max. switching current & AC \(8 \mathrm{~A} ; \mathrm{DC} 5 \mathrm{~A}\) \\
\hline Max. switching power & \(2,000 \mathrm{VA} ; 150 \mathrm{~W}\) \\
\hline \begin{tabular}{l} 
Failure rate \\
(reference value)
\end{tabular} & \begin{tabular}{l}
5 VDC 10 mA \\
(for gold plating \(0.35 ~ \mu\) min.)
\end{tabular} \\
\hline
\end{tabular}

Note: Electrical life expectancy is reduced.

\section*{■ Characteristics}
\begin{tabular}{|l|l|}
\hline Operate time & Approx. 6 ms \\
\hline Release time & Approx. 3 ms \\
\hline Max. operating frequency & \begin{tabular}{l} 
Mechanical: 36,000 operations/hr \\
Electrical: 360 operations \(/ \mathrm{hr}\) (under rated load)
\end{tabular} \\
\hline Insulation resistance & \(1,000 \mathrm{M} \Omega\) min. (at 500 VDC ) \\
\hline Dielectric strength & \begin{tabular}{l}
\(4,000 \mathrm{VAC}\) between coil and contacts \\
\(1,000 \mathrm{VAC}\) between contacts
\end{tabular} \\
\hline Creepage/clearance & 8 mm min. between coil and contacts \\
\hline Vibration resistance & \begin{tabular}{l} 
Malfunction: \(\mathrm{NO}: 10\) to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude) \\
NC: 10 to 55 to \(10 \mathrm{~Hz}, 0.4 \mathrm{~mm}\) single amplitude (0.8mm double amplitude)
\end{tabular} \\
\hline Shock resistance & Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline Endurance & \begin{tabular}{l} 
Mechanical: \(10,000,000\) operations min. \\
Electrical: Approx. 100,000 operations
\end{tabular} \\
\hline Ambient temperature & Operating: \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient humidity & Operating: \(5 \%\) to \(85 \%\) \\
\hline Weight & Approx. 9 g \\
\hline Protection class & 1 I according to \(\mathrm{VDE0106} \mathrm{Part} 1\) \\
\hline Insulation class & \(\mathrm{C} / 250, \mathrm{~B} / 380\) according to \(\mathrm{VDE0110}\) \\
\hline
\end{tabular}

\section*{- Approved Standards}

EC255 (Includes Reinforced Insulation and Spacing Requirements
According to IEC65, 335-1, 950, EN60335-1, 60950)
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Standard } & \multicolumn{1}{|c|}{ Contact form } & \multicolumn{1}{c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact rating } & \multicolumn{1}{c|}{ Conditions } \\
\hline IEC255-1-00 & SPDT & \begin{tabular}{l}
\(5,6,12,18,24\) \\
36, 48 VDC
\end{tabular} & \begin{tabular}{l}
8 A at 250 VAC \((\cos \sigma=1)\) \\
(see note)
\end{tabular} & \begin{tabular}{l} 
Pollution: degree: 3 \\
Overvoltage category: 11 \\
Operating range: class 1
\end{tabular} \\
& & & & \begin{tabular}{l} 
OPST-NO \\
Pick-up class: class C \\
Ambient temperature: \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}
- VDE
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Standard } & \multicolumn{1}{|c|}{ Contact form } & \multicolumn{1}{c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact rating } & \multicolumn{1}{c|}{ Conditions } \\
\hline VDE0435 Part201 & SPDT & \(5,6,12,18,24\) & 8 A at 250 VAC \((\cos \sigma=1)\) & \begin{tabular}{l} 
Insulation group according to VDE0110 \\
C/250, B/380 \\
VDE0435 Part120 \\
SPST-NO \\
Sperating range: class 1
\end{tabular} \\
& & & & \begin{tabular}{l} 
Pick-up class: class C \\
Ambient temperature: \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}

■ UL508 (File No. E41515)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact ratings } \\
\hline 5 to 48 VDC & \begin{tabular}{l}
10 A at 250 VAC (resistive) \\
5 A 30 VDC (resistive) \\
\\
\\
\(8 \mathrm{~A} \mathrm{at} \mathrm{250} \mathrm{VAC} \mathrm{(resistive)} \mathrm{(ambient} \mathrm{temperature:} 85^{\circ} \mathrm{C}\) ) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

■ CSA C22.2 (File No. LR31928-543)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact ratings } \\
\hline 5 to 48 VDC & 10 A at 250 VAC (resistive) \\
& 5 A at 30 VDC (resistive) \\
& 8 A at 250 VAC (resistive) (ambient temperature: \(85^{\circ} \mathrm{C}\) ) \\
\hline
\end{tabular}

Engineering Data



\section*{Engineering Data}


\section*{ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.}

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

\section*{A Cubic, Single-pole 10-A Power} Relay
- Sub-miniature 'sugar cube' relay with
universal terminal footprint.
■ Conforms to VDE0435 (VDE approval: B250
Insulation grade), UL508, CSA22.2
■ Tracking resistance: CTI>250 (-VD type).
■ UL class-F coil insulation model available (UL
class-B coil insulation for standard model).
- High switching power: 10 A .

- Two types of seal available; flux protection
and fully sealed.
- Withstands impulse of up to \(4,500 \mathrm{~V}\).

■ 400-mW and \(360-\mathrm{mW}\) coil power consumption types available.
- Pre-soldered terminals.

Ordering Information
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Enclosure Rating} & \multirow[t]{2}{*}{Contact Form} & \multicolumn{3}{|c|}{Contact Material} \\
\hline & & \(\mathrm{AgSnO}_{2}\) & AgSnln & AgCdo \\
\hline \multirow[t]{2}{*}{Flux protection} & SPDT & \begin{tabular}{l}
G5LE-1 \\
G5LE-1-VD \\
G5LE-1-CF
\end{tabular} & \begin{tabular}{l}
G5LE-1-ASI \\
G5LE-1-ASI-VD \\
G5LE-1-ASI-CF
\end{tabular} & \begin{tabular}{l}
G5LE-1-ACD \\
G5LE-1-ACD-VD \\
G5LE-1-ACD-CF
\end{tabular} \\
\hline & SPST-NO & \begin{tabular}{l}
G5LE-1A \\
G5LE-1A-VD \\
G5LE-1A-CF
\end{tabular} & \begin{tabular}{l}
G5LE-1A-ASI \\
G5LE-1A-ASI-VD \\
G5LE-1A-ASI-CF
\end{tabular} & G5LE-1A-ACD G5LE-1A-ACD-VD G5LE-1A-ACD-CF \\
\hline \multirow[t]{2}{*}{Fully sealed} & SPDT & G5LE-14 G5LE-14-VD G5LE-14-CF & G5LE-14-ASI G5LE-14-ASI-VD G5LE-14-ASI-CF & G5LE-14-ACD G5LE-14-ACD-VD G5LE-14-ACD-CF \\
\hline & SPST-NO & G5LE-1A4 G5LE-1A4-VD G5LE-1A4-CF & G5LE-1A4-ASI G5LE-1A4-ASI-VD G5LE-1A4-ASI-CF & G5LE-1A4-ACD G5LE-1A4-ACD-VD G5LE-1A4-ACD-CF \\
\hline
\end{tabular}

Note: When ordering, add the rated coil voltage to the model number.
Example: G5LE-1 12 VDC
Model Number Legend
G5LE \(-\frac{\square}{1} \frac{\square}{3}-\frac{\square}{4}-\frac{\square}{5}-\frac{\square}{6}-\frac{\square}{7}\) VDC
1. Number of Poles

1: 1 pole
2. Contact Form

None: SPDT
A: \({ }^{\text {SPDT-NO }}\)
3. Enclosure ratings
\[
\begin{aligned}
& \text { None: Flux protection } \\
& \text { 4: Fully sealed }
\end{aligned}
\]
4. Contact Material

None: \(\mathrm{AgSnO}_{2}\)
ASI: AgSnIn
ACD: AgCdO
5. Insulation System

None: Class B
CF: Class F (UL and CSA only)
6. Coil Power Consumption/Coil Characteristic

> None: Approx. 400 mW 36: Approx. 360 mW
7. Approved Standards

None: UL, CSA, TÜV
VD: UL, CSA, TÜV and VDE
(Not applicable with "-CF."
8. Rated Coil Voltage

5, 9, 12, 24, 48 VDC

Specifications

\section*{- Coil Ratings}

400-mW Type
\begin{tabular}{|l|l|l|l|l|l|}
\hline Rated voltage & 5 VDC & 9 VDC & 12 VDC & 24 VDC & 48 VDC \\
\hline Rated current & 79.4 mA & 45 mA & 33.3 mA & 16.7 mA & 8.33 mA \\
\hline Coil resistance & \(63 \Omega\) & \(200 \Omega\) & \(360 \Omega\) & \(1,440 \Omega\) & \(5,760 \Omega\) \\
\hline Must operate voltage & \(75 \%\) max. of rated voltage & \\
\hline Must release voltage & \(10 \%\) min. of rated voltage \\
\hline Max. voltage & \(130 \%\) of rated voltage at \(85^{\circ} \mathrm{C}, 170 \%\) of rated voltage at \(23^{\circ} \mathrm{C}\) \\
\hline Power consumption & Approx. 400 mW \\
\hline
\end{tabular}

Note: The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 10 \%\).
360-mW Type
\begin{tabular}{|l|l|l|l|l|l|}
\hline Rated voltage & 5 VDC & 9 VDC & 12 VDC & 24 VDC & 48 VDC \\
\hline Rated current & 72 mA & 40 mA & 30 mA & 15 mA & 7.5 mA \\
\hline Coil resistance & \(70 \Omega\) & \(225 \Omega\) & \(400 \Omega\) & \(1,600 \Omega\) & \(6,400 \Omega\) \\
\hline Must operate voltage & \(75 \%\) max. of rated voltage & \\
\hline Must release voltage & \(10 \%\) min. of rated voltage \\
\hline Max. voltage & \(130 \%\) of rated voltage (at \(85^{\circ} \mathrm{C}\) ), \(170 \%\) of rated voltage (at \(23^{\circ} \mathrm{C}\) ) \\
\hline Power consumption & Approx. 360 mW \\
\hline
\end{tabular}

Note: The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 10 \%\).

\section*{■ Contact Ratings}
\begin{tabular}{|l|l|}
\hline Load & Resistive load (cos \(\sigma=1)\) \\
\hline Rated Load & 10 A at \(120 \mathrm{VAC} ; 8 \mathrm{~A}\) at \(30 \mathrm{VDC} ; 10 \mathrm{~A}\) at \(250 \mathrm{VAC}(12+24 \mathrm{VDC})\) \\
\hline Rated Carry Current & 10 A \\
\hline Max. switching voltage & \(250 \mathrm{VAC}, 125 \mathrm{VDC}(30 \mathrm{VDC}\) when UL/CSA standard is applied) \\
\hline Max. switching current & AC: \(10 \mathrm{~A} ;\) DC: 8 A \\
\hline Max. switching power & \(1,200 \mathrm{VA}, 240 \mathrm{~W}\) \\
\hline Failure rate (reference value) & 100 mA at 5 VDC \\
\hline
\end{tabular}

PCB Power Relay - G5LE
OmROn

\section*{■ Characteristics}
\begin{tabular}{|c|c|}
\hline Contact resistance & \(100 \mathrm{~m} \Omega\) max. \\
\hline Operate time & 10 ms max . \\
\hline Release time & 5 ms max. \\
\hline Bounce Time & Operate: Approx. 0.6 ms Release: Approx. 7.2 ms \\
\hline Max. switching frequency & Mechanical: 18,000 operations/hr Electrical: 1,800 operations/hr at rated load \\
\hline Insulation resistance & \(100 \mathrm{M} \Omega\) min. (at 500 VDC ) \\
\hline Dielectric strength & 2,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts \(750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity \\
\hline Impulse withstand voltage & \(4,500 \mathrm{~V}(1.250 \mu \mathrm{~s})\) between coil and contacts \\
\hline Vibration resistance & Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude ( \(1.5-\mathrm{mm}\) double amplitude) Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude ( \(1.5-\mathrm{mm}\) double amplitude) \\
\hline Shock resistance & \begin{tabular}{l}
Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) \\
Malfunction: \(100 \mathrm{~m} / \mathrm{s}^{2}\)
\end{tabular} \\
\hline Endurance & Mechanical: 10,000,000 operations min. (at 18,000 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr) 36,000 operations min. ( 10 A at 250 VAC ) \\
\hline Ambient temperature & Operating: \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient humidity & Operating: \(5 \%\) to \(85 \%\) \\
\hline Weight & Approx. 12 g \\
\hline
\end{tabular}
- Approved Standards

UL508, UL114, UL478, UL325, UL873, UL1409, UL1950 (File No. E41643)/CSA C22.2 No. 14, No. 1 (File No. LR34815)
\begin{tabular}{|c|c|c|}
\hline Model & Coil ratings & Contact ratings \\
\hline G5LE & 3 to 48 VDC & \begin{tabular}{l}
12 A, 120 VAC (resistive load 30,000 cycles) \\
\(10 \mathrm{~A}, 250\) VAC (general use) \\
\(10 \mathrm{~A}, 125\) VAC (general use 100,000 cycles) \\
8 A, 30 VDC (resistive load) \\
6 A, 277 VAC (general use) \\
NO: \\
\(1 / 6 \mathrm{hp}, 120\) VAC ( 50,000 cycles) \\
\(1 / 3 \mathrm{hp}, 125 \mathrm{VAC}, 70^{\circ} \mathrm{C} 30 \mathrm{~K}\) with Class 130 B system \\
\(65^{\circ} \mathrm{C} 30 \mathrm{~K}\) with Class 105 Coil insulation system \\
TV-3, 120 VAC \\
TV-5, 120 VAC (For ASI only) \\
NC: \\
\(1 / 8 \mathrm{hp}, 120\) VAC ( 50,000 cycles) \\
1/10 hp, 120 VAC (50,000 cycles))
\end{tabular} \\
\hline
\end{tabular}

\section*{TÜV DIN VDE 0435, IEC 255 (File No. R9151267)}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & \multicolumn{1}{|c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact ratings } \\
\hline G5LE & \(\frac{\text { Approx. } 400 \mathrm{~mW}}{3,5,9,12,24 \mathrm{VDC}}\) & \(2.5 \mathrm{~A}, 250 \mathrm{VAC}(\) (cost \(=0.4)\) \\
& Approx. 360 mW \\
& \(5,6,9,12,24 \mathrm{VDC}\) & \(8 \mathrm{~A}, 250 \mathrm{VAC}(\) resistive load) \\
& & \\
\hline
\end{tabular}

VDE DIN VDE 0435, DIN EN 60255 (File No. 6850ÜG)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & \multicolumn{1}{|c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact ratings } \\
\hline G5LE & \begin{tabular}{l} 
Approx. 400 mW \\
\(3,5,9,9,24,48 \mathrm{VDC}\) \\
\\
\\
\\
Approx. 360 mW \\
\(5,6,12,24,48 \mathrm{VDC}\)
\end{tabular} & \begin{tabular}{l}
\(5 \mathrm{~A}, 250 \mathrm{VAC}\) (resistive load, 50,000 cycles) \\
at \(85^{\circ} \mathrm{C}\). \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Engineering Data


Ambient Temperature vs


Ambient temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
Note: The maximum coil voltage refers to the The maximum coil voltage refers to the
maximum value in a varying range of operating power voltage, not a continu-
ous voltage.


\section*{Dimensions}

Note: 1. All units are in millimeters unless otherwise indicated
2. Orientation marks are indicated as follows: \(\square\)


\section*{A Cubic, Single-pole 10-A Power \\ \\ Relay} \\ \\ Relay}

■ Subminiature "sugar cube" relay with universal terminal footprint.
■ Conforms to VDE0435, UL508, CSA22.2.
■ High switching power: 10 A. 250 VAC
■ Two types of seal available; flux protection and fully sealed.
- Withstands impulse of up to \(4,500 \mathrm{~V}\).
- Coil power consumption: 360 mW

- Tracking resistance: CTI >250
- Contains no lead inside and features
cadmium-free contacts ensuring environment-friendly use

Ordering Information
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Enclosure ratings } & \multicolumn{1}{c|}{ Contact form } & \multicolumn{1}{c|}{ Model } \\
\hline \multirow{2}{*}{ Flux protection } & SPDT & G5LC-1-EU \\
\cline { 2 - 3 } & SPST-NO & G5LC-1A-EU \\
\hline \multirow{2}{*}{ Fully sealed } & SPDT & G5LC-14-EU \\
\cline { 2 - 3 } & SPST-NO & G5LC-1A4-EU \\
\hline
\end{tabular}

Note: When ordering, add the rated coil voltage to the model number.
Example: G5LC-1-EU 12 VDC
Rated coil voltage
Model Number Legend
G5LC - \(-\frac{\square}{1} \frac{\square}{2} \frac{\square}{3}-\) EU \(\underset{4}{\square}\) VDC
1. Number of Poles
3. Enclosure Ratings

1: 1 pole
2. Contact Form

None: SPDT
None: Flux protection
4: Fully sealed

A: SPST-NO
5, 12,24 VDC

■ Coil Ratings
\begin{tabular}{|l|l|l|l|}
\hline Rated voltage & 5 VDC & 12 VDC & 24 VDC \\
\hline Rated current & 71.5 mA & 30 mA & 15.1 mA \\
\hline Coil resistance & \(69.9 \Omega\) & \(390 \Omega\) & \(1.585 \Omega\) \\
\hline Must operate voltage & \(75 \%\) max. of rated voltage & \\
\hline Must release voltage & \(10 \%\) min. of rated voltage & \\
\hline Max. voltage & \(110 \%\) of rated voltage at \(85^{\circ} \mathrm{C}\) & \\
\hline Power consumption & Approx. 360 mW & \\
\hline
\end{tabular}

Note: The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 10 \%\),

PCB Power Relay - G5LC-EU
OmROn

\section*{\(\square\) Contact Ratings}
\begin{tabular}{|l|l|}
\hline Load & Resistive load (cos \(\phi=1)\) \\
\hline Rated Load & \begin{tabular}{l}
10 A at \(250 \mathrm{VAC}(\mathrm{NO}), 12 \mathrm{~A}\) at \(120 \mathrm{VAC}(\mathrm{NO}), 5 \mathrm{~A}\) at \(120 \mathrm{VAC}(\mathrm{NO} / \mathrm{NC})\) \\
10 A at \(24 \mathrm{VDC}(\mathrm{NO}), 5 \mathrm{~A}\) at \(24 \mathrm{VDC}(\mathrm{NO} / \mathrm{NC})\)
\end{tabular} \\
\hline Rated Carry Current & 12 A \\
\hline Max. switching voltage & \(250 \mathrm{VAC}, 125 \mathrm{VDC}(30 \mathrm{VDC}\) when UL/CSA standard is applied) \\
\hline Max. switching current & \(\mathrm{AC}: 12 \mathrm{~A} ; \mathrm{DC}: 12 \mathrm{~A}\) \\
\hline Max. switching power & \(1,200 \mathrm{VA}, 240 \mathrm{~W}\) \\
\hline Failure rate (reference value) & 100 mA at 5 VDC (P level: \(\lambda 60=0.1 \times 10^{6}\) operation) \\
\hline
\end{tabular}

\section*{- Characteristics}
\begin{tabular}{|l|l|}
\hline Contact resistance & \(100 \mathrm{~m} \Omega \mathrm{max}\). \\
\hline Operate time & 10 ms max. \\
\hline Release time & 5 ms max. \\
\hline Insulation resistance & \(1,000 \mathrm{M} \Omega \mathrm{min}\). (at 500 VDC\()\) \\
\hline Dielectric strength & \begin{tabular}{l}
\(2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts \\
\(750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity
\end{tabular} \\
\hline Impulse withstand voltage & \(4,500 \mathrm{~V} \mathrm{(1.2} \mathrm{\times 50ms)} \mathrm{between} \mathrm{coil} \mathrm{and} \mathrm{contacts}\) \\
\hline Vibration resistance & \begin{tabular}{l} 
Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude \((1.5-\mathrm{mm}\) double amplitude) \\
Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude \((1.5-\mathrm{mm}\) double amplitude)
\end{tabular} \\
\hline Shock resistance & \begin{tabular}{l} 
Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) \\
Malfunction: \(100 \mathrm{~m} / \mathrm{s}^{2}\)
\end{tabular} \\
\hline Endurance & \begin{tabular}{l} 
Mechanical: \(10,000,000\) operations min. (at 36,000 operations \(/ \mathrm{hr})\) \\
Electrical: 100,000 operations min. (at 1,800 operations \(/ \mathrm{hr})\)
\end{tabular} \\
\hline Ambient temperature & Operating: \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient humidity & Operating: \(5 \%\) to \(85 \%\) \\
\hline Weight & Approx. 12 g \\
\hline
\end{tabular}

\section*{- Approved Standards}

UL508, UL873 (File No. E41643)/CSA C22.2 No. 14, No. 0 (File No. LR31928)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & \multicolumn{1}{|c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact ratings } \\
\hline G5LC-EU & 5 to 24 VDC & NO: \(10 \mathrm{~A}, 250 \mathrm{VAC}\) (general use) \\
& & \(10 \mathrm{~A}, 24 \mathrm{VDC}\) (resistive load) \\
& & \(1 / 8 \mathrm{hp}, 120 \mathrm{VAC}\) (50,00 cycles) \\
& & \(12 \mathrm{~A}, 120 \mathrm{VAC}\) (resistive load) \\
& & NC: \(1 / 8 \mathrm{hp}, 120 \mathrm{VAC}\) (50,000 cycles) \\
\hline
\end{tabular}

\section*{VDE DIN VDE 0435, DIN EN 60255 (File No. 6850ÜG)}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & \multicolumn{1}{|c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact ratings } \\
\hline G5LC-EU & \begin{tabular}{l} 
Approx. 360 mW \\
\(5,12,24 \mathrm{VDC}\)
\end{tabular} & \begin{tabular}{l}
\(5 \mathrm{~A}, 250 \mathrm{VAC}\) (resistive load, 50,000 cycles) at \(85^{\circ} \mathrm{C}\). \\
\(10 \mathrm{~A}, 250 \mathrm{VAC}\) (resistive load 50,000 cycles) (NO) at \(85^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}

Engineering Data


Ambient Temperature vs.


Ambient temperature ( \({ }^{\circ} \mathrm{C}\) )
Note: The maximum coil voltage refers to the maximum value in a varying
range of operating power voltage, range of operating power voltage,
not a continuous voltage.

Dimensions
Note: 1. All units are in millimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: \(\square \square\)

G5LC-EU


Terminal Arrangement/Interna
Connections Connections (Bottom View) SPDT


Terminal Arrangement/nternal Arrangement/Internal
Connections (Bottom View)

\section*{SPST-NO}


Mounting Holes
(Bottom View)
Tolerance: \(\pm 0.1 \mathrm{~mm}\)
unless specified SPDT Five, \(13^{302}\) dia holes

Mounting Holes
(Bottom View)
(Bottom View)
Tolerance: \(\pm 0.1 \mathrm{~mm}\)
unless specified SPST-NO Four, \(1.3^{+00^{2}}\) dia. holes


\section*{Precautions}

\section*{Basic Information}

Before actually committing any component to a mass-production situation, OMRON strongly recommends situational testing, in as confirm that the product will still perform as expected after surviving the many handling and mounting processes involved in mass production. Also, even though OMRON relays are individually tested a number of times, and each meets strict
requirements, a certain testing tolerance is permissible. When a requirements, a certain testing tolerance is permissible. When a high-precision product uses many components, each depends
upon the rated performance thresholds of the other components. Thus, the overall performance tolerance may accumulate into undesirable levels. To avoid problems, always conduct tests
under the actual application conditions.

\section*{General}

To maintain the initial characteristics of a relay, exercise care that it is not dropped or mishandled. For the same reasen, do not
remove the case of the relay; otherwise, the characteristics may degrade. Avoid using the relay in an atmosphere containing sulfuric acid (SO2), hydrogen sulfide (H2S), or other corrosive gases. Do not continuously apply a voltage higher than the rated maximum voltage to the relay. Never try to operate the relay at voltage and a current other than those rated
Do not use the relay at temperatures higher than that specified in the catalog or data sheet.

Flat Relays that Switch 10-A/15-A

\section*{Loads with New Quick-connect}

\section*{Terminals}

■ Ideal for switching power in household appliances or for outputs from industrial devices.

■ Sub-miniature dimensions: \(22 \times 16 \times 11 \mathrm{~mm}\) (L x W x H).
- High-sensitivity models available with low power consumption ( 150 mW ).
- UL and CSA approved
- Fully sealed models and quick-connect terminal models available (\#187 load contact terminals).

Ordering Information
\begin{tabular}{|l|l|l|l|l|l|}
\hline Contact form & Enclosure ratings & General purpose & High-sensitivity & \multicolumn{1}{c|}{ High-capacity } & \begin{tabular}{c} 
Quick-connect \\
terminals
\end{tabular} \\
\hline SPST-NO & Flux protection & G5C-1 & G5C-1-H & G5CE-1 & G5CE-1-TP \\
\hline- & Fully sealed & G5C-14 & G5C-14-H & - & - \\
\hline
\end{tabular}

Note: 1. When ordering, add the rated coil voltage to the model number. Example: G5C-1 12 VDC
High-capacity models with a Fully coil voltage
Standacis models with a Fully sealed structure are not available.
VAD
5. Models with PTI250 are also available.
Contact your OMRON representative for more details.

Model Number Legend

1. Relay
2. Number of Poles pole (SPST-NO) 4. Classification
3. Enclosure Ratings None: Flux protection
4:
H: High-sensitivity
TP: Quick-connect terminals (\#187)
5. Rated Coil Voltage \({ }_{3,5,6,12,24,48 \mathrm{VDC}}\)

PCB Power Relay - G5C(E)
OmROn

\section*{■ Coil Ratings}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{3}{|c|}{\begin{tabular}{c} 
Standard, high-capacity, \\
or quick-connect terminals
\end{tabular}} & \multicolumn{3}{c|}{ High-sensitivity } \\
\hline & 5 VDC & 12 VDC & 24 VDC & 5 VDC & 12 VDC & 24 VDC \\
\hline Rated current & 40 mA & 16.7 mA & 8.3 mA & 30 mA & 12.5 mA & 6.25 mA \\
\hline Coil resistance & \(125 \Omega\) & \(720 \Omega\) & \(2,880 \Omega\) & \(167 \Omega\) & \(960 \Omega\) & \(3,840 \Omega\) \\
\hline Must operate voltage & \(75 \%\) max. of rated voltage & \(80 \%\) max. of rated voltage \\
\hline Must release voltage & \(10 \%\) min. of rated voltage \\
\hline Max. voltage & \begin{tabular}{l}
\(150 \%\) (standard)/130\% (high-capacity, \\
quick-connect terminals) of rated voltage (at \(23^{\circ} \mathrm{C}\) )
\end{tabular} & \(150 \%\) (at \(23^{\circ} \mathrm{C}\) ) \\
\hline Power consumption & Approx. 200 mW & \\
\hline
\end{tabular}

■ Contact Ratings
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Item} & \multicolumn{2}{|r|}{Standard} & \multicolumn{2}{|l|}{High-sensitivity} & \multicolumn{2}{|l|}{High-capacity, or quick-connect terminals} \\
\hline & Resistive load ( \(\cos \varnothing=1\) ) & Inductive load ( \(\cos \varnothing=0.4\), \(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})\) & \[
\begin{aligned}
& \text { Resistive load } \\
& (\cos \varnothing=1)
\end{aligned}
\] & Inductive load ( \(\cos \varnothing=0.4\), \(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) ) & Resistive load ( \(\cos \varnothing=1\) ) & Inductive load ( \(\cos \varnothing=0.4\), \(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) ) \\
\hline Rated load & 10 A at 250 VAC 10 A at 30 VDC & 3 A at 250 VAC ; 3 A at 30 VDC & 10 A at 250 VAC ; 10 A at 30 VDC & 3 A at 250 VAC ; 3 A at 30 VDC & 15 A at 110 VAC ; 10 A at 30 VDC & 5 A at 110 VAC ; 3 A at 30 VDC \\
\hline Rated carry current & \multicolumn{2}{|l|}{10 A} & \multicolumn{2}{|l|}{10 A} & \multicolumn{2}{|l|}{15 A} \\
\hline Max. switching voltage & \multicolumn{2}{|l|}{250 VAC} & \multicolumn{2}{|l|}{250 VAC} & \multicolumn{2}{|l|}{250 VAC} \\
\hline Max. switching current & \multicolumn{2}{|l|}{10 A} & \multicolumn{2}{|l|}{10 A} & \multicolumn{2}{|l|}{15 A} \\
\hline Max. switching & 2,500 VA, 300 W & \(750 \mathrm{VA}, 90 \mathrm{~W}\) & 2,500 VA, 300 W & \(750 \mathrm{VA}, 90 \mathrm{~W}\) & 2,500 VA, 300 W & \(750 \mathrm{VA}, 90 \mathrm{~W}\) \\
\hline
\end{tabular}

\section*{- Characteristics}
\begin{tabular}{|c|c|}
\hline Contact resistance & \(30 \mathrm{~m} \Omega\) max. (Quick-connect terminals type: \(100 \mathrm{~m} \Omega\) max.) \\
\hline Operate time & \(10 \mathrm{~ms} \mathrm{max}\). (High-sensitivity type: \(15 \mathrm{~ms} \mathrm{max}\). ) \\
\hline Release time & 10 ms max. \\
\hline Insulation resistance & 1,000 M \(\Omega\) min. \\
\hline Dielectric strength & 2,500 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity \(1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity \\
\hline Impulse withstand voltage & \(4,500 \mathrm{~V}(1.2 \times 50 \mu \mathrm{~s})\) between coil and contacts \\
\hline Vibration resistance & Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude ( \(1.5-\mathrm{mm}\) double amplitude) Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude ( \(1.5-\mathrm{mm}\) double amplitude) \\
\hline Shock resistance & Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) Malfunction: \(200 \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline Endurance & \begin{tabular}{l}
Mechanical: 20,000,000 operations min. at 18,000 operations/hr \\
Electrical: 300,000 operations min. (100,000 operations min. for Fully sealed Type) at 1,200 operations/hr under rated load of 10 A at 250 VAC ; \\
100,000 operations min. under load of 15 A at 110 VAC for high-capacity models \\
100,000 operations min. at 1,200 operations/hr under rated load of 10 A at 30 VDC
\end{tabular} \\
\hline Ambient temperature & Operating: \(-25^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient humidity & Operating: 5\% to \(85 \%\) \\
\hline Weight & Approx. 8 g (for TP model: Approx. 9.6 g ) \\
\hline
\end{tabular}

Note: 1. The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 10 \%\).
2. Operating characteristics are measured at a coil temperature of \(23^{\circ} \mathrm{C}\).
- Approved Standards

UL508 (File No. E41515)/CSA C22.2 No. 14 (File No. LR31928)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & \multicolumn{1}{c|}{ Coil ratings } \\
\hline 3 to 100 VDC & \(15 \mathrm{~A}, 125 \mathrm{VAC}\) \\
& \(10 \mathrm{~A}, 250 \mathrm{VAC}\) \\
& \(10 \mathrm{~A}, 30 \mathrm{VDC}\) (resistive load only) \\
\hline
\end{tabular}

\section*{■ Engineering Data}


Switching voltage (V)

Endurance


Switching current (A)

Ambient Temperature vs Maximum Coil Voltage


Ambient temperature ( \({ }^{\circ} \mathrm{C}\) )

Note: The maximum coil voltage refers to the maximum value in a a varying range of oferating
power voltage, not a continuous voltage.

Dimensions
Note: 1. All units are in millimeters unless otherwise indicated 2. Orientation marks are indicated as follows: \(\square \square\)


Precautions
Quick-connect Terminals
The quick-connect terminals can be connected to an appropriate intend to impose voltage on the quick-connect terminals mounted on a PCB.
The terminals are compatible to the Fasten receptacle \#187 positive block connector.
The portion marked with oblique lines includes the charged
terminals of the power relay. When you mount the power relay on a PCB, make sure any unnecessary metal patterns on the PCB are kept away from this portion.


SPST-NO Type Breaks 10-A Loads; SPST-NO + SPST-NC Type Breaks

\section*{8-A Load}

■ Compact: \(20 \times 15 \times 10 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})\).
■ Low power consumption: 200 mW .
■ Flux protection or fully sealed construction available.
- Unique moving loop armature reduces relay size, magnetic interference, and contact bounce.
\(\square\) Single- and double-winding latching types also available

\section*{Ordering Information}
\begin{tabular}{|l|l|l|l|l|r|}
\hline \multirow{2}{*}{ Classification } & \multirow{2}{*}{ Contact form } & \multicolumn{2}{|c|}{ Straight PCB } & \multicolumn{2}{c|}{ Self-clinching PCB } \\
\cline { 3 - 6 } & & Flux protection & Fully sealed & Flux protection & Fully sealed \\
\hline \multirow{2}{*}{ Single-side stable } & SPST-NO & G6C-1117P-US & G6C-1114P-US & G6C-1117C-US & G6C-1114C-US \\
\cline { 2 - 6 } & SPST-NO + SPST-NC & G6C-2117P-US & G6C-2114P-US & G6C-2117C-US & G6C-2114C-US \\
\hline \begin{tabular}{l} 
Single-winding \\
latching
\end{tabular} & SPST-NO & G6CU-1117P-US & G6CU-1114P-US & G6CU-1117C-US & G6CU-1114C-US \\
\cline { 2 - 7 } & SPST-NO + SPST-NC & G6CU-2117P-US & G6CU-2114P-US & G6CU-2117C-US & G6CU-2114C-US \\
\hline \begin{tabular}{l} 
Double-winding \\
latching
\end{tabular} & SPST-NO & G6CK-1117P-US & G6CK-1114P-US & G6CK-1117C-US & G6CK-1114C-US \\
\cline { 2 - 7 } & SPST-NO + SPST-NC & G6CK-2117P-US & G6CK-2114P-US & G6CK-2117C-US & G6CK-2114C-US \\
\hline
\end{tabular}

Note: When ordering, add the rated coil voltage to the model number. Example: G6C-1117P-US 12 VDC

Rated coil voltage
Model Number Legend

1. Relay Function

None: Single-side stable 3. Contact Type
\(\begin{array}{ll}\text { None: Single-side stable } & \text { 1: Standard } \\ \text { U: Single-winding latching } & \text { 4. Enclosure Ratings }\end{array}\)
7: Flux protection
2. Contact Form

4: Fully sealed
\(\begin{array}{ll}\text { 11: } & \text { SPST-NO } \\ \text { 21: } & \text { SPST-NO + SPST-NC }\end{array}\)
5. Terminals

C: Self-clinching PCB
6. Approved Standards
7. Rated Coil
7. Rated Coil Voltage

\section*{■ Accessories (Order Separately)}

Back Connecting Sockets
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Applicable relay } & Back connecting socket \({ }^{*}\) \\
\hline G6C(U)-1114P-US & P6C-06P \\
G6C(U)-1117P-US & \\
G6C(U)-2114P-US & \\
G6C(U)-2117P-US & \\
\hline G6CK-1114P-US & P6C-08P \\
G6CK-1117P-US & \\
G6CK-2114P-US & \\
G6CK-2117P-US & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Removal Tool & \multicolumn{1}{|c|}{ P6B-Y1 } \\
\hline Hold-down Clips & P6B-C2 \\
\hline
\end{tabular}
*Not applicable to the self-clinching type.
The operating current for the socket is 5 A max

\section*{Specifications}

\section*{- Coil Rating}

Single-side Stable Type
\begin{tabular}{|l|l|l|l|l|l|}
\hline Rated voltage & 3 VDC & 5 VDC & 6 VDC & 12 VDC & 24 VDC \\
\hline Rated current & 67 mA & 40 mA & 33.3 mA & 16.7 mA & 8.3 mA \\
\hline Coil resistance & \(45 \Omega\) & \(125 \Omega\) & \(180 \Omega\) & \(720 \Omega\) & \(2,880 \Omega\) \\
\hline \begin{tabular}{l} 
Coil inductance \\
(H)
\end{tabular} Armature OFF & 0.078 & 0.22 & 0.36 & 1.32 & 4.96 \\
\hline (ref. value) & Armature OFF & 0.067 & 0.18 & 0.29 & 1.13 \\
\hline Must operate voltage & \(70 \%\) max. of rated voltage & 4.19 \\
\hline Must release voltage & \(70 \%\) min. of rated voltage & \\
\hline Max. voltage & \(160 \%\) of rated voltage (at \(23^{\circ} \mathrm{C}\) ) \\
\hline \multicolumn{5}{|l|}{ Power consumption } & Approx. 200 mW \\
\hline
\end{tabular}

Single-side Latching Type
\begin{tabular}{|l|l|l|l|l|l|}
\hline Rated voltage & 3 VDC & 5 VDC & 6 VDC & 12 VDC & 24 VDC \\
\hline Rated current & 67 mA & 40 mA & 33.3 mA & 16.7 mA & 8.3 mA \\
\hline Coil resistance & \(45 \Omega\) & \(125 \Omega\) & \(180 \Omega\) & \(720 \Omega\) & \(2,880 \Omega\) \\
\hline \begin{tabular}{l} 
Coil inductance \\
(H) (ref. value)
\end{tabular} Armature OFF & 0.09 & Armature OFF & 0.06 & 0.25 & 0.36 \\
1.75 & 5.83 \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline Must operate voltage & \(70 \%\) max. of rated voltage \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Must release voltage & \(70 \%\) min. of rated voltage \\
\hline Max. voltage & \(160 \%\) of rated voltage (at 2 \\
\hline
\end{tabular}

Power consumption \(\quad\) Approx. 200 mW

Double-winding Latching Type
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rated voltage} & 3 VDC & 5 VDC & 6 VDC & 12 VDC & 24 VDC \\
\hline \multirow[t]{4}{*}{Set coil} & \multicolumn{2}{|l|}{Rated current} & 93.5 mA & 56.0 mA & 46.7 mA & 23.3 mA & 11.7 mA \\
\hline & \multicolumn{2}{|l|}{Coil resistance} & 32.1 ת & \(89.3 \Omega\) & \(129 \Omega\) & \(514 \Omega\) & 2,056 \(\Omega\) \\
\hline & Coil inductance & Armature OFF & 0.03 & 0.07 & 0.10 & 0.37 & 1.56 \\
\hline & (H) (ref. value) & Armature OFF & 0.02 & 0.06 & 0.08 & 0.32 & 1.18 \\
\hline \multirow[t]{4}{*}{Reset coil} & \multicolumn{2}{|l|}{Rated current} & 93.5 mA & 56.0 mA & 46.7 mA & 23.3 mA & 11.7 mA \\
\hline & \multicolumn{2}{|l|}{Coil resistance} & 32.1 ת & \(89.3 \Omega\) & \(129 \Omega\) & \(514 \Omega\) & 2,056 \(\Omega\) \\
\hline & Coil inductance & Armature OFF & 0.03 & 0.08 & 0.12 & 0.47 & 1.46 \\
\hline & (H) (ref. value) & Armature OFF & 0.02 & 0.07 & 0.10 & 0.38 & 1.13 \\
\hline \multicolumn{3}{|l|}{Must set voltage} & \multicolumn{5}{|l|}{70\% max. of rated voltage} \\
\hline \multicolumn{3}{|l|}{Must reset voltage} & \multicolumn{5}{|l|}{70\% min. of rated voltage} \\
\hline \multicolumn{3}{|l|}{Max. voltage} & \multicolumn{5}{|l|}{\(130 \%\) of rated voltage (at \(23^{\circ} \mathrm{C}\) )} \\
\hline \multicolumn{3}{|l|}{Power consumption} & \multicolumn{5}{|l|}{Set coil: Approx. 280 mW Reset coil: Approx. 280 mW} \\
\hline
\end{tabular}

Note: 1. The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 10 \%\).
2. Operating characteristics are measured at a coil temperature of \(23^{\circ} \mathrm{C}\).
3. The minimum pulse width of the set and reset voltage is 20 ms .

\section*{- Contact Ratings}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{2}{|r|}{SPST-NO} & \multicolumn{2}{|c|}{SPST-NO+SPST-NC} \\
\hline Load & Resistive load
\[
(\cos \varnothing=1)
\] & Inductive load ( \(\cos \varnothing=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) ) & Resistive load
\[
(\cos \varnothing=1)
\] & Inductive load
\[
\cos \varnothing=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})
\] \\
\hline Rated load & 10 A at 250 VAC ; 10 A at 30 VDC & \[
\begin{aligned}
& 5 \mathrm{~A} \text { at } 30 \mathrm{VAC} \text {; } \\
& 5 \mathrm{~A} \text { at } 30 \mathrm{VDC}
\end{aligned}
\] & 8 A at 30 VAC ; 8 A at 30 VDC ; & 3.5 A at 250 VAC ; 3.5 A at 30 VDC \\
\hline Contact material & \multicolumn{4}{|l|}{AgCdo} \\
\hline Rated carry current & \multicolumn{2}{|l|}{10 A} & \multicolumn{2}{|l|}{8 A} \\
\hline Max. switching voltage & \multicolumn{4}{|l|}{\(380 \mathrm{VAC}, 125 \mathrm{VDC}\) (the case of latching \(250 \mathrm{VAC}, 125 \mathrm{VDC})\)} \\
\hline Max. switching current & \multicolumn{2}{|l|}{10 A} & \multicolumn{2}{|l|}{8 A} \\
\hline Max. switching power & 2,500 VA, 300 W & 1,250 VA, 220 W & 2,000 VA, 240 W & 875 VA, 170 W \\
\hline Failure rate (reference value) & \multicolumn{4}{|l|}{10 mA at 5 VDC} \\
\hline
\end{tabular}

\section*{■ Characteristics}
\begin{tabular}{|c|c|}
\hline Contact resistance & \(30 \mathrm{~m} \Omega\) max. \\
\hline Operate (set) time & \(10 \mathrm{~ms} \mathrm{max}\). (mean value: approx. 5 ms ) \\
\hline Release (reset) time & \(10 \mathrm{~ms} \mathrm{max}\). (mean value: approx. 2 ms ; latching types: mean value: approx. 5 ms ) \\
\hline Bounce Time & Operate: 5 ms max. Release: 5 ms max \\
\hline Min. set/reset signal width & Latching type: 20 ms (at \(23^{\circ} \mathrm{C}\) ) \\
\hline Max. switching frequency & \begin{tabular}{l}
Mechanical: 18,000 operations/hr \\
Electrical: 1,800 operations/hr (under rated load)
\end{tabular} \\
\hline Insulation resistance & \(1,000 \mathrm{M} \Omega\) min. (at 500 VDC , at 250 VDC between set coil and reset coil) \\
\hline Dielectric strength & \(2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts \(2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of different polarity \(1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity 250 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between set and reset coils \\
\hline Impulse withstand voltage & \(6.000 \mathrm{~V}(1.2 \times 50 \mu \mathrm{~s})\) between coil and contacts (latching types: 4,500 V, 1.2 \(50 \mu \mathrm{~s}\) ) \\
\hline Vibration resistance & Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude ( \(1.5-\mathrm{mm}\) double amplitude) Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude ( \(1.5-\mathrm{mm}\) double amplitude) \\
\hline Shock resistance & \begin{tabular}{l}
Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) \\
Malfunction: \(100 \mathrm{~m} / \mathrm{s}^{2}\)
\end{tabular} \\
\hline Ambient temperature & Operating: \(-25^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient humidity & Operating: 5\% to 85\% \\
\hline Endurance & Mechanical: 50,000,000 operations min. (at 18,000 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr) \\
\hline Weight & Approx. 5.6 g \\
\hline
\end{tabular}

\section*{■ Approved Standards}

UL508 (File No. E41643)
\begin{tabular}{|c|c|c|c|}
\hline Model & Contact form & Coil rating & Contact rating \\
\hline G6C-1114P-US G6C-1114C-US G6C-1117P-US G6C-1117C-US & SPST-NO & 3 to 60 VDC & \begin{tabular}{l}
\(10 \mathrm{~A}, 250\) VAC (general use) \\
\(10 \mathrm{~A}, 30\) VDC (resistive load) \\
\(1 / 6 \mathrm{hp}, 125\) VAC \\
1/4 hp, 125 VAC \\
1/4 hp, 250 VAC \\
\(1 / 3 \mathrm{hp}, 250\) VAC \\
TV-5 \\
\(600 \mathrm{~W}, 120\) VAC (tungsten) \\
530 VA, 20 to 265 VAC, 2 A max. (pilot duty) \\
43.2 VA, 30 VDC (pilot duty) \\
12LRA, 2.2FLA, 30 VDC ( 30,000 cycle)
\end{tabular} \\
\hline G6C-2114P-US G6C-2114C-US G6C-2117P-US G6C-2117C-US & SPST-NO + SPST-NC & & \begin{tabular}{l}
8 A, 250 VAC (general use) 8 A, 30 VDC (resistive load) \\
\(1 / 6 \mathrm{hp}, 125\) VAC \\
1/4 hp, 125 VAC \\
\(1 / 4 \mathrm{hp}, 250\) VAC \\
TV-5 \\
600 W, 120 VAC (tungsten)
\end{tabular} \\
\hline
\end{tabular}

■ Approved Standards (continued)
CSA C22.2 No. 14 (File No. LR31928)
\begin{tabular}{|c|c|c|c|}
\hline Model & Contact form & Coil rating & Contact rating \\
\hline G6C-1114P-US G6C-1114C-US G6C-1117P-US G6C-1117C-US & SPST-NO & 3 to 60 VDC & \begin{tabular}{l}
\(10 \mathrm{~A}, 250\) VAC (general use) 10 A, 30 VDC (resistive load) 1/6 hp, 125 VAC \(1 / 4 \mathrm{hp}, 125\) VAC \\
\(1 / 4 \mathrm{hp}, 250\) VAC \\
\(1 / 3 \mathrm{hp}, 250\) VAC TV-5 \\
600 W, 120 VAC (tungsten)
\end{tabular} \\
\hline G6C-2114P-US G6C-2114C-US G6C-2117P-US G6C-2117C-US & SPST-NO + SPST-NC & 3 to 60 VDC & \begin{tabular}{l}
8 A, 250 VAC (general use) 8 A, 30 VDC (resistive load) \\
1/6 hp, 125 VAC \\
\(1 / 4 \mathrm{hp}, 125\) VAC \\
\(1 / 4 \mathrm{hp}, 250\) VAC \\
TV-5 \\
600 W, 120 VAC (tungsten)
\end{tabular} \\
\hline
\end{tabular}

\section*{- Engineering Data}


Switching voltage (V)
Ambient Temperature vs

Ambient temperature \(\left({ }^{\circ} \mathrm{C}\right)\)

\section*{Endurance}


Switching voltage (V)


Switching current (A)


Note: The maximum coil voltage refers to the maxi-
mum value in a varying range of operatin

G6CU- \(\square 117\) P-US


G6CU- \(\square 117 \mathrm{C}-\mathrm{US}\)


G6CU- \(\square 114\) P-US


G6CU- \(\square 114 \mathrm{C}\)-US


\section*{G6CU-1117P-US, G6CU-1117C-US G6CU-1114P-US, G6CU-1114C Terminal Arrangement/Intern
Connections (Bottom View)}


Mounting Holes
(Bottom View)


G6CU-2117P-US, G6CU-2117C-US Terminal Arrangement/Internal (Bottom View)

Mounting Holes
(Bottom View)




G6CK- \(\square 117 \mathrm{C}-\mathrm{US}\)


G6CK- \(\square 114 \mathrm{P}-\mathrm{US}\)


G6CK- \(\square 114 \mathrm{C}-\mathrm{US}\)


G6CK-1117P-US, G6CK-1117C-US
G6CK-1114P-US, G6CK-1114C-US Terminal Arrangement/Internal Connections (Bottom View)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular} Mounting Holes
(Bottom View)


G6CK-2117P-US, G6CK-2117C-U Terminal Arrangement/Interna

Mounting Holes
(Bottom View) (Bottom View)


Back Connecting Sockets
P6C-06P


Mounting Holes (Bottom View)


P6C-08P



*Average value
Note: Rated current of socket max. 5 A

Removal Tool
P6B-Y1

Hold-down Clips
P6B-C2

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

\section*{A Power Relay for a Variety of}

\section*{Purposes with Various Models}

■ Conforms to VDE0435 (VDE approval: C250 insulation grade), UL508, CSA22.2, SEV, SEMKO.
Meets VDE0700 requirements for household products according to VDE0110.
- Clearance and creepage distance: \(8 \mathrm{~mm} / 8 \mathrm{~m}\).
Models with CTI250 material available.
- High-sensitivity ( 360 mW ) and high-capacity (16 A) types available.
- Double-winding latching type available.

■ Plug-in with test button and quick-connect terminals available.


- Highly functional socket available.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Classification}} & \multirow[t]{2}{*}{Enclosure Ratings} & \multirow[t]{2}{*}{Coil Ratings} & \multicolumn{4}{|c|}{Contact Form} \\
\hline & & & & SPST-NO & SPDT & DPST-NO & DPDT \\
\hline \multirow[t]{7}{*}{PCB terminal} & \multirow[t]{2}{*}{General-purpose} & Flux protection & \multirow[t]{2}{*}{AC/DC} & G2R-1A & G2R-1 & G2R-2A & G2R-2 \\
\hline & & Fully sealed & & G2R-1A4 & G2R-14 & G2R-2A4 & G2R-24 \\
\hline & \multirow[t]{2}{*}{Bifurcated contact} & Flux protection & \multirow[t]{2}{*}{DC} & G2R-1AZ & G2R-1Z & - & - \\
\hline & & Fully sealed & & G2R-1AZ4 & G2R-1Z4 & - & - \\
\hline & High-capacity & Flux protection & AC/DC & G2R-1A-E & G2R-1-E & - & - \\
\hline & High-sensitivity & Flux protection & \multirow[t]{2}{*}{DC} & G2R-1A-H & G2R-1-H & G2R-2A-H & G2R-2-H \\
\hline & Double-winding latching & Flux protection & & G2RK-1A & G2RK-1 & G2RK-2A & G2RK-2 \\
\hline \multirow[t]{6}{*}{Plug-in terminal} & General-purpose & \multirow[t]{6}{*}{Unsealed} & \multirow[t]{3}{*}{AC/DC} & - & G2R-1-S & - & G2R-2-S \\
\hline & LED indicator & & & - & G2R-1-SN & - & G2R-2-SN \\
\hline & LED indicator with test button & & & - & G2R-1-SNI & - & G2R-2-SNI \\
\hline & Diode & & \multirow[t]{3}{*}{DC} & - & G2R-1-SD & - & G2R-2-SD \\
\hline & LED indicator and diode & & & - & G2R-1-SND & - & G2R-2-SND \\
\hline & LED indicator and diode with test button & & & - & G2R-1-SNDI & - & G2R-2-SNDI \\
\hline \multirow[t]{3}{*}{Plug-in terminal (Bifurcated crossbar contact)} & General-purpose & & \multirow[t]{2}{*}{AC/DC} & G2R-1A3-S & G2R-13-S & - & - \\
\hline & LED indicator & & & G2R-1A3-SN & G2R-13-SN & - & - \\
\hline & LED indicator and diode & & DC & G2R-1A3-SND & G2R-13-SND & - & - \\
\hline
\end{tabular}

Note: 1. When ordering, add the rated coil voltage to the model number. Example: G2R-1A 12 VDC
2. OMRON has also prepared the above collays with AgSnin contacts, which are more tolerant of large inrush currents and physical movement compared with relays with standard contacts. When ordering, add "-ASI" to the model number Example: G2R-1A-ASI
3. Standard, NO contact type relays are TV-3 class products in accordance with the TV standards of the UL/CSA. Models with AgSnIn contacts are TV-5 class products. Example: G2R-1A-ASI
When ordering a TV-8 class model, insert "-TV8" into the model number as follows
Example: G2R-1A-TV8-AS
4. Models with CTI250 material are also available. Contact your OMRON representative for more details.

Model Number Legend

1. Relay Function

None: Single-side stable
K: Double-winding latching
2. Number of Poles
\(\begin{array}{ll}\text { 1: } & 1 \text { pole } \\ \text { 2: } & 2 \text { poles }\end{array}\)
3. Contact Form

None: \(\quad\) IPDT
A: \(\quad \square P S T-\) No
4. Contact Type
\(\begin{array}{ll}\text { None: } & \text { Single } \\ \text { Z: } & \text { Bifurcated }\end{array}\)
\(\begin{array}{ll}\text { 3: } & \text { Bifurcated } \\ \text { Bifurcated crossbar }\end{array}\)
5. Enclosure Ratings

None: Flux protection
4: Fully sealed
6. Terminals

None: Straight PCB
S: Plug-in
Quick-connect (upper bracket mounting)
- Accessories (Order Separately)

Connecting Sockets
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Number of Poles} & \multirow[t]{2}{*}{Applicable Relay Model} & \multirow[t]{2}{*}{Track/surface-mounting Socket} & \multicolumn{2}{|r|}{Back-mounting Socket} \\
\hline & & & Terminals & Model \\
\hline \multirow[t]{2}{*}{1 pole} & \multirow[t]{2}{*}{\begin{tabular}{l}
G2R-1- \\
S(N)(D)(ND)(NI)(NDI)G2R- \\
13-S (G2R-1A3-S)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { P2RF-05-E } \\
& \text { P2RF-05 }
\end{aligned}
\]} & PCB terminals & P2R-05P, P2R-057P \\
\hline & & & Solder terminals & P2R-05A \\
\hline \multirow[t]{2}{*}{2 Poles} & \multirow[t]{2}{*}{G2R-2-S(N)(D)(ND)(NI)(NDI)} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { P2RF-08-E } \\
\text { P2RF-08 } \\
\hline
\end{array}
\]} & PCB terminals & P2R-08P, P2R-087P \\
\hline & & & Solder terminals & P2R-08A \\
\hline
\end{tabular}

Note: See Dimensions for details on socket size.
\begin{tabular}{|c|c|c|}
\hline Applicable socket & Description & Model \\
\hline \multirow[t]{3}{*}{Track connecting socket} & Mounting track & \begin{tabular}{l}
\(50 \mathrm{~cm}(\mathrm{l}) \times 7.3 \mathrm{~mm}(\mathrm{t}):\) PFP-50N \\
1 m (I) \(\times 7.3 \mathrm{~mm}\) (t): PFP-100N \\
1 m (I) \(\times 16 \mathrm{~mm}(\mathrm{t}):\) PFP-100N2
\end{tabular} \\
\hline & End plate & PFP-M \\
\hline & Spacer & PFP-S \\
\hline Back connecting socket & Mounting plate & P2R-P* \\
\hline
\end{tabular}

PCB Power Relay - G2R
OmROn
Specifications

\section*{- Coil Ratings}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rated voltage} & 12 VAC & 24 VAC & 100/(110) VAC & 120 VAC & 200/(220)VAC & 220 VAC & 230 VAC & 240 VAC \\
\hline \multirow[t]{2}{*}{Rated Current} & 50 Hz & 93 mA & 46.5 mA & 11 mA & 9.3 mA & 5.5 (4.0) mA & 5.1 mA & 4.7 (3.7) mA & 4.7 mA \\
\hline & 60 Hz & 75 mA & 37.5 mA & 9/(10.6) mA & 7.5 mA & 4.5 (5.3) mA & 4.1 mA & 3.8 (3.1) mA & 3.8 mA \\
\hline \multicolumn{2}{|l|}{Coil resistance} & \(65 \Omega\) & \(260 \Omega\) & 4,600 \(\Omega\) & 6,500 \(\Omega\) & \[
\begin{aligned}
& \hline 20,200 \\
& (25,000) \Omega \\
& \hline
\end{aligned}
\] & 25,000 \(\Omega\) & \[
\begin{aligned}
& \hline 26,850 \\
& (30,000) \Omega
\end{aligned}
\] & 30,000 \(\Omega\) \\
\hline Coil inductance & Armature OFF & 0.19 & 0.81 & 13.34 & 21 & 51.3 & 57.5 & 62 & 65.5 \\
\hline (H) (ref. value) & Armature ON & 0.39 & 1.55 & 26.84 & 42 & 102 & 117 & 124 & 131 \\
\hline \multicolumn{2}{|l|}{Must operate voltage} & \multicolumn{8}{|l|}{80\% max. of rated voltage} \\
\hline \multicolumn{2}{|l|}{Must release voltage} & \multicolumn{8}{|l|}{\(30 \%\) min. of rated voltage} \\
\hline \multicolumn{2}{|l|}{Max. voltage} & \multicolumn{8}{|l|}{\(140 \%\) of rated voltage (at \(23^{\circ} \mathrm{C}\) )} \\
\hline \multicolumn{2}{|l|}{Power consumption} & \multicolumn{8}{|l|}{Approx. 0.9 VA at 60 Hz (approx. 0.7 VA at 60 Hz )} \\
\hline
\end{tabular}

Note: 1. Rated voltage of bifurcated crossbar contact type: 100/(110) VAC, 200/(220) VAC, 230 VAC (Approx. 0.7 VA at 60 Hz ).
2. Depending on the type of Relay, some Relays do not have coil specifications. Contact your OMRON representative for more details
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Rated voltage & 5 VDC & 6 VDC & 12 VDC & 24 VDC & 48 VDC & 100 VDC \\
\hline Rated current ( \(50 / 60 \mathrm{~Hz}\) ) & 106 mA & 88.2 mA & 43.6 mA & 21.8 mA & 11.5 mA & 5.3 mA \\
\hline Coil resistance & \(47 \Omega\) & \(68 \Omega\) & \(275 \Omega\) & 1,100 \(\Omega\) & 4,170 \(\Omega\) & 18,860 \(\Omega\) \\
\hline Coil inductance Armature OFF & 0.20 & 0.28 & 1.15 & 4.27 & 13.86 & 67.2 \\
\hline (H) (ref. value) Armature ON & 0.39 & 0.55 & 2.29 & 8.55 & 27.71 & 93.2 \\
\hline Must operate voltage & \multicolumn{6}{|l|}{70\% max. of rated voltage} \\
\hline Must release voltage & \multicolumn{6}{|l|}{\(15 \% \mathrm{~min}\). of rated voltage} \\
\hline Max. voltage & \multicolumn{6}{|l|}{\(170 \%\) of rated voltage (at \(23^{\circ} \mathrm{C}\) )} \\
\hline Power consumption & \multicolumn{6}{|l|}{Approx. 0.53 W} \\
\hline
\end{tabular}

Note: Rated voltage of bifurcated crossbar contact type: 12 VDC, 24 VDC

\section*{High-sensitivity Relays}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rated voltage} & 5 VDC & 6 VDC & 12 VDC & 24 VDC & 48 VDC \\
\hline \multicolumn{2}{|l|}{Rated current \(\mathbf{( 5 0 / 6 0 H z}\) ) (see Note. 1)} & 71.4 mA & 60 mA & 30 mA & 15 mA & 7.5 mA \\
\hline \multicolumn{2}{|l|}{Coil resistance (see Note. 1)} & \(70 \Omega\) & \(100 \Omega\) & \(400 \Omega\) & 1,600 \(\Omega\) & 6,400 \(\Omega\) \\
\hline \multirow[t]{2}{*}{Coil inductance (H) (ref. value)} & Armature OFF & 0.37 & 0.53 & 2.14 & 7.80 & 31.20 \\
\hline & Armature ON & 0.75 & 1.07 & 4.27 & 15.60 & 62.40 \\
\hline \multicolumn{2}{|l|}{Must operate voltage} & \multicolumn{5}{|l|}{70\% max. of rated voltage} \\
\hline \multicolumn{2}{|l|}{Must release voltage} & \multicolumn{5}{|l|}{\(15 \%\) min. of rated voltage} \\
\hline \multicolumn{2}{|l|}{Max. voltage} & \multicolumn{5}{|l|}{\(170 \%\) of rated voltage (at \(23^{\circ} \mathrm{C}\) )} \\
\hline \multicolumn{2}{|l|}{Power consumption} & \multicolumn{5}{|l|}{Approx. 0.36 W} \\
\hline
\end{tabular}

Note: 1. The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \({ }^{15 \%} /-20 \%\) ( AC rated
current) or \(\pm 10 \%\) (DC coil resistance)
2. LEDs are used for the built-in operation indicator. For models equipped with these indications, the VAC rated current must be
increased by approximately 1 mA ; the VDC rated current, by approximately 4 mA .
3. Operating characteristics are measured at a coil temperature of \(23^{\circ} \mathrm{C}\)

Double-winding Latching Relays
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rated voltage} & 5 VDC & 6 VDC & 12 VDC & 24 VDC \\
\hline \multirow[t]{4}{*}{Set Coil} & \multicolumn{2}{|l|}{Rated current (see note 1.)} & 167 mA & 138 mA & 70.6 mA & 34.6 mA \\
\hline & \multicolumn{2}{|l|}{Coil resistance (see note 1.)} & \(30 \Omega\) & \(43.5 \Omega\) & \(170 \Omega\) & \(694 \Omega\) \\
\hline & \multirow[t]{2}{*}{Coil inductance (H) (ref. value)} & Armature OFF & 0.073 & 0.104 & 0.42 & 1.74 \\
\hline & & Armature ON & 0.146 & 0.208 & 0.83 & 3.43 \\
\hline \multirow[t]{4}{*}{Reset Coil} & \multicolumn{2}{|l|}{Rated current} & 119 mA & 100 mA & 50 mA & 25 mA \\
\hline & \multicolumn{2}{|l|}{Coil resistance} & \(42 \Omega\) & \(60 \Omega\) & \(240 \Omega\) & \(960 \Omega\) \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Coil inductance \\
(H) (ref. value)
\end{tabular}} & Armature OFF & 0.003 & 0.005 & 0.018 & 0.079 \\
\hline & & Armature ON & 0.006 & 0.009 & 0.036 & 0.148 \\
\hline \multicolumn{3}{|l|}{Must set voltage} & \multicolumn{4}{|l|}{70\% max. of rated voltage} \\
\hline \multicolumn{3}{|l|}{Must reset voltage} & \multicolumn{4}{|l|}{70\% max. of rated voltage} \\
\hline \multicolumn{3}{|l|}{Max. voltage} & \multicolumn{4}{|l|}{\(140 \%\) of rated voltage (at \(23^{\circ} \mathrm{C}\) )} \\
\hline \multicolumn{3}{|l|}{Power consumption} & \multicolumn{4}{|l|}{Set coil: Approx. 850 mW ; Reset coil: Approx. 600 mW} \\
\hline
\end{tabular}

Note: 1. The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 10 \%\).
2. Operating characteristics are measured at a coil temperature of \(23^{\circ} \mathrm{C}\)

\section*{- Contact Ratings}

PCB/Flux Protection, Plug-in, Quick-connect Terminal Relays
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item & \multicolumn{4}{|c|}{General-purpose, quick-connect terminal} & \multicolumn{2}{|r|}{High-capacity} \\
\hline Number of poles & \multicolumn{2}{|l|}{1 pole} & \multicolumn{2}{|l|}{2 poles} & \multicolumn{2}{|l|}{1 pole} \\
\hline Load & Resistive load
\[
(\cos \varnothing=1)
\] & \begin{tabular}{l}
Inductive load \\
( \(\cos \varnothing=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) )
\end{tabular} & Resistive load
\[
(\cos \varnothing=1)
\] & \begin{tabular}{l}
Inductive load \\
( \(\cos \varnothing=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) )
\end{tabular} & Resistive load
\[
(\cos \varnothing=1)
\] & \begin{tabular}{l}
Inductive load \\
( \(\cos \sigma=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) )
\end{tabular} \\
\hline Rated Load & \begin{tabular}{l}
10 (1) A at 250 VAC ; \\
10 (1) A at 30 VDC
\end{tabular} & \begin{tabular}{l}
7.5 A at 250 \\
VAC; \\
5 A at 30 VDC
\end{tabular} & 5 A at 250 VAC ; 5 A at 30 VDC & \begin{tabular}{l}
2 A at 250 VAC ; \\
3 A at 30 VDC
\end{tabular} & 16 A at 250 VAC 16 A at 30 VDC & 8 A at 250 VAC ; 8 A at 30 VDC \\
\hline Rated carry current & \multicolumn{2}{|l|}{10 (1) A} & \multicolumn{2}{|l|}{5 A} & \multicolumn{2}{|l|}{16 A} \\
\hline Max. switching voltage & \multicolumn{2}{|l|}{380 VAC, 125 VDC} & \multicolumn{2}{|l|}{380 VAC, 125 VDC} & \multicolumn{2}{|l|}{380 VAC, 125 VDC} \\
\hline Max. switching current & \multicolumn{2}{|l|}{10 (1) A} & \multicolumn{2}{|l|}{5 A} & \multicolumn{2}{|l|}{16 A} \\
\hline Max. switching power & \[
\begin{aligned}
& 2,500(250) \text { VA, } \\
& 300(30) \mathrm{W}
\end{aligned}
\] & \[
\begin{aligned}
& 1,875 \mathrm{VA}, \\
& 150 \mathrm{~W}
\end{aligned}
\] & \[
\begin{aligned}
& 1,250 \mathrm{VA}, \\
& 150 \mathrm{~W}
\end{aligned}
\] & \[
\begin{array}{|l}
500 \mathrm{VA}, \\
90 \mathrm{~W}
\end{array}
\] & \[
\begin{aligned}
& 4,000 \mathrm{VA}, \\
& 480 \mathrm{~W}
\end{aligned}
\] & \[
\begin{array}{|l}
2,000 \mathrm{VA}, \\
240 \mathrm{~W}
\end{array}
\] \\
\hline Failure rate (reference value) & \multicolumn{2}{|l|}{100 mA at 5 VDC (1 mA at 5 VDC\()\)} & \multicolumn{2}{|l|}{10 mA at 5 VDC} & \multicolumn{2}{|l|}{100 mA at 5 VDC} \\
\hline
\end{tabular}

\footnotetext{
Note: 1. P level: \(\lambda_{60}=0.1 \times 10^{-6} /\) operation.
}

PCB/Flux Protection Relays
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{Bifurcated contacts} & \multicolumn{4}{|c|}{High-sensitivity} \\
\hline Number of poles & \multicolumn{2}{|l|}{1 pole} & \multicolumn{2}{|l|}{1 pole} & \multicolumn{2}{|l|}{2 poles} \\
\hline Load & Resistive load ( \(\cos \varnothing=1\) ) & \begin{tabular}{l}
Inductive load \\
( \(\cos \varnothing=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) )
\end{tabular} & Resistive load ( \(\cos \varnothing=1\) ) & \begin{tabular}{l}
Inductive load \\
( \(\cos \varnothing=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) )
\end{tabular} & Resistive load \((\cos \varnothing=1)\) & \begin{tabular}{l}
Inductive load \\
( \(\cos \varnothing=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) )
\end{tabular} \\
\hline Rated Load & 5 A at 250 VAC ; 5 A at 30 VDC & 2 A at 250 VAC ; 3 A at 30 VDC & 5 A at 250 VAC ; 5 A at 30 VDC & 2 A at 250 VAC ; 3 A at 30 VDC & 3 A at 250 VAC; 3 A at 30 VDC & 1 A at 250 VAC ; 1.5 A at 30 VDC \\
\hline Rated carry current & \multicolumn{2}{|l|}{5 A} & \multicolumn{2}{|l|}{5 A} & \multicolumn{2}{|l|}{3 A} \\
\hline Max. switching voltage & \multicolumn{2}{|l|}{\(380 \mathrm{VAC}, 125 \mathrm{VDC}\)} & \multicolumn{2}{|l|}{\(380 \mathrm{VAC}, 125 \mathrm{VDC}\)} & \multicolumn{2}{|l|}{\(380 \mathrm{VAC}, 125 \mathrm{VDC}\)} \\
\hline Max. switching current & \multicolumn{2}{|l|}{5 A} & \multicolumn{2}{|l|}{5 A} & \multicolumn{2}{|l|}{3 A} \\
\hline Max. switching power & \[
\begin{aligned}
& \text { 1,250 VA, } \\
& 150 \mathrm{~W}
\end{aligned}
\] & \[
\begin{array}{|l}
500 \mathrm{VA}, \\
90 \mathrm{~W}
\end{array}
\] & \[
\begin{aligned}
& 1,250 \mathrm{VA}, \\
& 150 \mathrm{~W}
\end{aligned}
\] & \[
\begin{aligned}
& 500 \mathrm{VA}, \\
& 90 \mathrm{~W} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 750 \mathrm{VA}, \\
& 90 \mathrm{~W}
\end{aligned}
\] & \[
\begin{aligned}
& 250 \text { VA, } \\
& 45 \mathrm{~W}
\end{aligned}
\] \\
\hline Failure rate (reference value) & \multicolumn{2}{|l|}{1 mA at 5 VDC} & \multicolumn{2}{|l|}{100 mA at 5 VDC} & \multicolumn{2}{|l|}{10 mA at 5 VDC} \\
\hline
\end{tabular}

Note: P level: \(\lambda_{60}=0.1 \times 10^{-6} /\) operation.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item & \multicolumn{4}{|c|}{General-purpose (single contact)} & \multicolumn{2}{|l|}{Bifurcated contact} \\
\hline Number of poles & \multicolumn{2}{|l|}{1 pole} & \multicolumn{2}{|l|}{2 poles} & \multicolumn{2}{|l|}{1 pole} \\
\hline Load & Resistive load
\[
(\cos \varnothing=1)
\] & \begin{tabular}{l}
Inductive load \\
( \(\cos \varnothing=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})\)
\end{tabular} & Resistive \((\cos \varnothing=\) & Inductive load ( \(\cos \varnothing=0.4\); \(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) ) & Resistive load
\[
(\cos \varnothing=1)
\] & \begin{tabular}{l}
Inductive load \\
( \(\cos \varnothing=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})\)
\end{tabular} \\
\hline Rated Load & 8 A at 250 VAC; 8 A at 30 VDC & 6 A at 250 VAC ; 4 A at 30 VDC & \begin{tabular}{l}
4 A at 25 \\
4 A at 30
\end{tabular} & 1.5 A at 250 VAO 2.5 A at 30 VDC & 5 A at 250 VAC ; 5 A at 30 VDC & 2 A at 250 VAC ; 3 A at 30 VDC \\
\hline Rated carry current & \multicolumn{2}{|l|}{8 A} & \multicolumn{2}{|l|}{4 A} & \multicolumn{2}{|l|}{5 A} \\
\hline Max. switching voltage & \multicolumn{2}{|l|}{\(380 \mathrm{VAC}, 125 \mathrm{VDC}\)} & \multicolumn{2}{|l|}{\(380 \mathrm{VAC}, 125 \mathrm{VDC}\)} & \multicolumn{2}{|l|}{\(380 \mathrm{VAC}, 125 \mathrm{VDC}\)} \\
\hline Max. switching current & \multicolumn{2}{|l|}{8 A} & \multicolumn{2}{|l|}{4 A} & \multicolumn{2}{|l|}{5 A} \\
\hline Max. switching power & \[
\begin{aligned}
& \text { 2,000 VA, } \\
& 240 \mathrm{~W}
\end{aligned}
\] & \[
\begin{array}{|l}
1,500 \mathrm{VA}, \\
120 \mathrm{~W}
\end{array}
\] & \[
\begin{aligned}
& 1,000 \mathrm{VA} \\
& 120 \mathrm{~W}
\end{aligned}
\] & \[
\begin{aligned}
& 375 \mathrm{VA}, \\
& 75 \mathrm{~W}
\end{aligned}
\] & \[
\begin{aligned}
& 1,250 \mathrm{VA}, \\
& 150 \mathrm{~W}
\end{aligned}
\] & \[
\begin{aligned}
& 500 \mathrm{VA}, \\
& 90 \mathrm{~W}
\end{aligned}
\] \\
\hline Failure rate (reference value) & \multicolumn{2}{|l|}{100 mA at 5 VDC} & \multicolumn{2}{|l|}{10 mA at 5 VDC} & \multicolumn{2}{|l|}{1 mA at 5 VDC} \\
\hline
\end{tabular}

Note: P level: \(\lambda_{60}=0.1 \times 10^{-6} /\) operation.

Latching Relays
\begin{tabular}{|c|c|c|c|c|}
\hline Number of poles & \multicolumn{2}{|r|}{1 pole} & \multicolumn{2}{|r|}{2 poles} \\
\hline Load & Resistive load ( \(\cos \varnothing=1\) ) & \begin{tabular}{l}
Inductive load \\
( \(\cos \varnothing=0.4\); \\
\(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) )
\end{tabular} & Resistive load \((\cos \varnothing=1)\) & Inductive load ( \(\cos \theta=0.4\);; \(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) ) \\
\hline Rated Load & 5 A at 250 VAC ; 5 A at 30 VDC & 3.5 A at 250 VAC ; 2.5 A at 30 VDC & \[
\begin{aligned}
& 3 \text { A at } 250 \mathrm{VAC} \\
& 3 \mathrm{~A} \text { at } 30 \mathrm{VDC}
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \mathrm{~A} \text { at } 250 \mathrm{VAC} ; \\
& 2 \mathrm{~A} \text { at } 30 \mathrm{VDC}
\end{aligned}
\] \\
\hline Rated carry current & \multicolumn{2}{|l|}{5 A} & \multicolumn{2}{|l|}{3 A} \\
\hline Max. switching voltage & \multicolumn{2}{|l|}{380 VAC, 125 VDC} & \multicolumn{2}{|l|}{380 VAC, 125 VDC} \\
\hline Max. switching current & \multicolumn{2}{|l|}{5 A} & \multicolumn{2}{|l|}{3 A} \\
\hline Max. switching power & \(1,250 \mathrm{VA}, 150 \mathrm{~W}\) & 875 VA, 75 W & \(750 \mathrm{VA}, 90 \mathrm{~W}\) & \(375 \mathrm{VA}, 60 \mathrm{~W}\) \\
\hline Failure rate (reference value) & \multicolumn{2}{|l|}{100 mA at 5 VDC} & \multicolumn{2}{|l|}{10 mA at 5 VDC} \\
\hline
\end{tabular}

Note: P level: \(\lambda_{60}=0.1 \times 10^{-6} /\) operation.

\section*{■ Characteristics}
\begin{tabular}{|c|c|c|}
\hline Item & 1 Pole & 2 Poles \\
\hline Contact resistance & \(30 \mathrm{~m} \Omega\) max. (high-capacity type: \(100 \mathrm{~m} \Omega\) max.) & \(50 \mathrm{~m} \Omega\) max. \\
\hline Operate (set) time & \multicolumn{2}{|l|}{15 ms max} \\
\hline Release (reset) time & \multicolumn{2}{|l|}{AC: \(10 \mathrm{~ms} \mathrm{max}\). . DC: \(5 \mathrm{~ms} \mathrm{max}\). ( w/built-in diode: \(20 \mathrm{~ms} \mathrm{max}\). )} \\
\hline Max. operating frequency & \multicolumn{2}{|l|}{\begin{tabular}{l}
Mechanical: 18,000 operations/hr \\
Electrical: 1,800 operations/hr (under rated load)
\end{tabular}} \\
\hline Insulation resistance & \multicolumn{2}{|l|}{\(1,000 \mathrm{M} \Omega\) min. (at 500 VDC\()\)} \\
\hline Dielectric strength & 5,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts* \(1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity & 5,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts*; \(3,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of different polarity \(1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity \\
\hline Vibration resistance & \multicolumn{2}{|l|}{Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude) Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude)} \\
\hline Shock resistance & \multicolumn{2}{|l|}{\begin{tabular}{l}
Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) \\
Malfunction: \(200 \mathrm{~m} / \mathrm{s}^{2}\) when energized; \(100 \mathrm{~m} / \mathrm{s}^{2}\) when not energized
\end{tabular}} \\
\hline Endurance & \multicolumn{2}{|l|}{Mechanical: AC coil: 10,000,000 operations min.; DC coil: 20,000,000 operations min. (at 18,000 operations/hr) Electrical:100,000 operations min. (at 1,800 operations/hr under rated load)} \\
\hline Ambient temperature & \multicolumn{2}{|l|}{Operating: \(-40^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) (with no icing)} \\
\hline Ambient humidity & \multicolumn{2}{|l|}{Operating: 5\% to 85\%} \\
\hline Weight & \multicolumn{2}{|l|}{Approx. 17 g (plug-in terminal: approx. 20 g )} \\
\hline
\end{tabular}

Note: Values in the above table are the initial values.
\(* 2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 minute when the P2R-05A or P2R-08A socket is mounted.
\begin{tabular}{|c|c|c|}
\hline Item & 1 Pole & 2 Poles \\
\hline Contact resistance & \(30 \mathrm{~m} \Omega\) max. & \(50 \mathrm{~m} \Omega\) max. \\
\hline Set time & \multicolumn{2}{|l|}{20 ms max} \\
\hline Reset time & \multicolumn{2}{|l|}{20 ms max.} \\
\hline Min. set/reset signal width & \multicolumn{2}{|l|}{30 ms max.} \\
\hline Max. operating frequency & \multicolumn{2}{|l|}{\begin{tabular}{l}
Mechanical: 18,000 operations/hr \\
Electrical: 1,800 operations/hr (under rated load)
\end{tabular}} \\
\hline Insulation resistance & \multicolumn{2}{|l|}{\(1,000 \mathrm{M} \Omega \mathrm{min}\). (at 500 VDC\()\)} \\
\hline Dielectric strength & \(5,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts*; \(1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same pole; 1,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between set and reset coil & 5,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts*; \(3,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of different poles \(1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same pole \(1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between set and reset coil \\
\hline Vibration resistance & \multicolumn{2}{|l|}{Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude) Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude)} \\
\hline Shock resistance & \multicolumn{2}{|l|}{\begin{tabular}{l}
Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) (approx. 100G) \\
Malfunction: Set: \(500 \mathrm{~m} / \mathrm{s}^{2}\) (approx. 50 G ); \(200 \mathrm{~m} / \mathrm{s}^{2}\) (approx. 20G) \\
Reset: \(100 \mathrm{~m} / \mathrm{s}^{2}\) (approx. 10G)
\end{tabular}} \\
\hline Endurance & \multicolumn{2}{|l|}{Mechanical: 10,000,000 operations min (at 18,000 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr under rated load)} \\
\hline Ambient temperature & \multicolumn{2}{|l|}{Operating: \(-40^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) (with no icing)} \\
\hline Ambient humidity & \multicolumn{2}{|l|}{Operating: 5\% to 85\%} \\
\hline Weight & \multicolumn{2}{|l|}{Approx. 17 g} \\
\hline
\end{tabular}

Note: Values in the above table are the initial values.
*2,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 minute when the P2R-05A or P2R-08A socket is mounted.
- Approved Standards

\section*{UL 508 (File No. E41643)}
\begin{tabular}{|c|c|c|c|}
\hline Model & Contact form & Coil ratings & Contact ratings \\
\hline \begin{tabular}{l}
G2R-1 \\
G2R-14 \\
G2R-1-H \\
G2R-1-S \\
G2R-1-T
\end{tabular} & SPDT & \multirow[t]{7}{*}{\[
\begin{aligned}
& 3 \text { to } 110 \text { VDC } \\
& 3 \text { to } 240 \text { VAC }
\end{aligned}
\]} & \multirow[t]{2}{*}{\(10 \mathrm{~A}, 30 \mathrm{VDC}\) (resistive) 10 A, 250 VAC (general use) TV-3 (NO contact only)} \\
\hline \begin{tabular}{l}
G2R-1A \\
G2R-1A4 \\
G2R-1A-H \\
G2R-1A-S
G2R-1A-T \\
G2R-1A-T
\end{tabular} & SPST-NO & & \\
\hline G2R-1-E & SPDT & & \multirow[t]{2}{*}{16 A, 30 VDC (resistive, NO contact only) 16 A, 250 VAC (general use, NO contact only) TV-3 (NO contact only); \(1 / 3 \mathrm{hp}, 120\) VAC} \\
\hline G2R-1A-E & SPST-NO & & \\
\hline G2R-2 G2R-24 G2R-2-H
G2R-2-S & DPDT & & \multirow[t]{2}{*}{\(5 \mathrm{~A}, 30 \mathrm{VDC}\) (resistive) \(5 \mathrm{~A}, 250 \mathrm{VAC}\) (general use) TV-3 (NO contact only)} \\
\hline G2R-2A G2R-2A4 G2R-2A-H & DPST-NO & & \\
\hline G2R-1A-ASI & SPST-NO & & \begin{tabular}{l}
\(10 \mathrm{~A}, 30 \mathrm{VDC}\) (resistive) \\
10 A, 250 VAC (general use) \\
TV-5/TV-8 (NO contact only)
\end{tabular} \\
\hline
\end{tabular}

CSA 22.2 No.0, No. 14 (File No. LR31928)
\begin{tabular}{|c|c|c|c|}
\hline Model & Contact form & Coil ratings & Contact ratings \\
\hline \[
\begin{aligned}
& \hline \text { G2R-1 } \\
& \text { G2R-14 } \\
& \text { G2R-1-H } \\
& \text { G2R-1-S } \\
& \text { G2R-1-T }
\end{aligned}
\] & SPDT & \multirow[t]{7}{*}{\[
\begin{aligned}
& 3 \text { to } 110 \text { VDC } \\
& 3 \text { to } 240 \text { VAC }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
10 A, 30 VDC (resistive) \\
\(10 \mathrm{~A}, 250\) VAC (general use) \\
TV-3 (NO contact only)
\end{tabular}} \\
\hline \begin{tabular}{l}
G2R-1A \\
G2R-1A4 \\
G2R-1A-H \\
G2R-1A-S \\
G2R-1A-T
\end{tabular} & SPST-NO & & \\
\hline G2R-1-E & SPDT & & 16 A, 30 VDC (resistive, NO contact only) \\
\hline G2R-1A-E & SPST-NO & & TV-3 (NO contact only) \\
\hline G2R-2 G2R-24 G2R-2-H G2R-2-S & DPDT & & \begin{tabular}{l}
\(5 \mathrm{~A}, 30\) VDC (resistive) \\
5 A, 250 VAC (general use) \\
TV-3 (NO contact only)
\end{tabular} \\
\hline G2R-2A G2R-2A4 G2R-2A-H G2R-2A-S & DPST-NO & & \\
\hline G2R-1A-ASI & SPST-NO & & \begin{tabular}{l}
\(10 \mathrm{~A}, 30 \mathrm{VDC}\) (resistive) \\
\(10 \mathrm{~A}, 250\) VAC (general use) \\
TV-8 (NO contact only); 1/4 hp, 125 VAC
\end{tabular} \\
\hline
\end{tabular}

\section*{SEV}
\begin{tabular}{|c|c|c|}
\hline Contact form & Coil ratings & Contact ratings \\
\hline 1 pole & \[
\begin{aligned}
& 3 \text { to } 110 \text { VDC } \\
& 3 \text { to } 240 \text { VAC }
\end{aligned}
\] & 16 A, 250 VAC1 (AgSnIn contact) 16 A, 30 VDC1 (AgSnIn contact) 10 A, 250 VAC1 5 A, 250 VAC3 10 A, 30 VDC1 \\
\hline 2 poles & \[
\begin{aligned}
& 3 \text { to } 110 \text { VDC } \\
& 3 \text { to } 240 \text { VAC }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \mathrm{~A}, 250 \mathrm{VAC} 1 \\
& 2 \mathrm{~A}, 380 \mathrm{VAC} 1 \\
& 5 \mathrm{~A}, 30 \mathrm{VDC} 1
\end{aligned}
\] \\
\hline
\end{tabular}

SEMKO
\begin{tabular}{|l|l|l|}
\hline Contact form & Coil ratings & Contact ratings \\
\hline 1 pole & \begin{tabular}{l}
3 to 110 VDC \\
3 to 240 VAC
\end{tabular} & \begin{tabular}{l}
\(10 / 80 \mathrm{~A}, 250 \mathrm{VAC}\) \\
\\
\end{tabular} \\
& & \(3 / 100 \mathrm{~A}, 250 \mathrm{VAC}\) \\
& & \(16 / 128 \mathrm{~A}, 250 \mathrm{VAC}\) (AgSnin contact) \\
& & \(5 / 40 \mathrm{~A}, 250 \mathrm{VAC}\) \\
\hline 2 & &
\end{tabular}

TÜV (IEC 255)
\begin{tabular}{|c|c|c|}
\hline Contact form & Coil ratings & Contact ratings \\
\hline 1 pole & 3 to 110 VDC, 6 VAC to 240 VAC (for Standard coil) 3 to 48 VDC (for \(\mathrm{K}, \mathrm{U}\) coil) 3 to 70 VDC (for H coil) & \[
\begin{aligned}
& 10 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varnothing=1.0) \\
& 10 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{~m}) \\
& 16 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varnothing=1.0) \\
& (\text { AgSnin contact) }
\end{aligned}
\] \\
\hline 2 poles & & \begin{tabular}{l}
8 A, 250 VAC \((\cos \varnothing=0.4)\) \\
5 A, 250 VAC \((\cos \varnothing=1.0)\) \\
5 A, 30 VDC ( 0 ms ) \\
\(2.5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varnothing=0.4)\)
\end{tabular} \\
\hline
\end{tabular}

VDE (IEC 255, VDE 0435), IMQ
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Contact form } & \multicolumn{1}{|c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact ratings } \\
\hline 1 pole & \(5,6,9,12,18,24,48,60,100,110 \mathrm{VDC}\) & \(10 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varnothing=1.0)\) \\
& \(12,18,24,48,50,100 /(110), 110,120\), & \(10 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms})\) \\
& \(200 /(220), 220,230,240 \mathrm{VAC}\) & \(16 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varnothing=1.0)\) \\
\hline 2 poles & \(5,6,9,12,18,24,48,60,100,110 \mathrm{VDC}\) & \(5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \sigma=1.0)\) \\
& \(12,18,24,48,50,100 /(110), 110,120\), & \(5 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms})\) \\
& \(200 /(220), 220,230,240 \mathrm{VAC}\) \\
\hline
\end{tabular}

Engineering Data
Maximum Switching Power

Flux Protection/Plug-in Relays G2R-1, G2R-1A, G2R-1-S, G2R-1-


Switching voltage (V)


Switching voltage (V)


Switching voltage (V)

G2R-1-E, G2R-1A-E


Switching voltage (V)
G2R-2-H, G2R-2A-H

witching voltage (V)


Switching voltage (V)

\section*{G2R-1Z, G2R-1AZ}


G2R-13-S, G2R-1A3-S


Switching voltage (V)

Engineering Data (cont.)


\section*{Endurance}

Flux Protection/Plug-in Relays
\[
\begin{aligned}
& \text { G2R-1, G2R-1A, G2R-1-S, G2R-1-T, } \\
& \mathrm{G} 2 \mathrm{R}-\mathrm{A}-\mathrm{T}
\end{aligned}
\]


Switching current (A)


G2R-1-E, G2R-1A-E


G2R-2-H, G2R-2A-H


Switching current (A)

G2R-1Z, G2R-1AZ


G2R-13-S, G2R-1A3-S



Ambient Temperature vs Maximum Coil Voltage


Ambient temperature \(\left({ }^{\circ} \mathrm{C}\right)\)

Note: The maximum coil voltage refers to the maxi me maximum coil voitage refers to tereng
mum value in a varring range of operating
power voltage, not a continuous voltage.

\section*{Dimensions}

Note: 1. All units are in millimeters unless otherwise indicated
1. All units are in milimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: \(\square \quad \square\)

Relays with PCB Terminals
G2R-1, G2R-1Z, G2R-1-H


G2R-1A, G2R-1AZ, G2R-1A-H
 G2R-1-E

Average value
SPST-NO/High-capacity Relays
G2R-1A-E

 Internal Connections (Bottom View)

\section*{Mounting Holes}
(Bottom View)
olerance: \(\pm 0.1\)

(No coil polarity)
(No coil polarity)

(No coil polarity)

(No coil polarity)

Relays with PCB Terminals SPDT Relays
G2R-14, \(22 \mathrm{R}-1 \mathrm{Z}\)

 \({ }^{\text {*Average value }}\)

\section*{}

SPST-NO Relays
G2R-1A4, G2R-1AZ

SPDT Relays
G2R-1-S, G2R-1-SD, G2R-1-SN, G2R-1-SND, G2R-1-SNI, G2R-1-SNDI
G2R-13-S, G2R-13-SD, G2R-13-SN, G2R-13-SND

*This terminal is
SPDT only.




\section*{Terminal Arrangement/} nternal Connections

Mounting Holes
(Bottom View) (Bottom View) Tolerance: \(\pm 0.1\)

\author{

}


Relays with Plug-in Terminals



Terminal Arrangement/Internal Connections
(Bottom View) (Bottom View)
G2R-1-S, G2R-13-S
 G2R-1-SN, G2R-1-S
G2R-13-SN (DC)


G2R-1-SND, G2R-1-SNDI,
G2R-13-SND (DC) G2R-13-SND (DC)


G2R-1-SN, G2R-1-SNI,
G2R-13-SN (AC)


G2R-1-SD, G2R-13-SD
(DC)

(After confirming coil
polarity wire polarity wire correctly.)
(Excent G2R-1-S (Except G2R
G2R-13-S)

\section*{Relays with PCB Terminals} DPDT Relays
G2R-2, G2R-2-H


DPST-NO Relays

(No coil polarity)


(No coil polarity)
\[
\begin{aligned}
& \begin{array}{l}
\text { DPDT Relays } \\
\text { G2R-24 }
\end{array}
\end{aligned}
\]


Double-winding Latching Relays with РСВ Terminals

(No coil polarity)


PCB Power Relay - G2R
omron

Double-winding Latching Relays with PCB Terminals


\section*{Terminal Arrangement/} Internal Connec
(Bottom View)

(After confirming coil
polarity, wire correctly.)


Relays with Quick-connect Terminals SPDT Relays G2R-1-




SPST-NO Relays G2R-1A-T



(After confirming coil
polarity, wire correctly


Terminal Arrangement/Internal Connections
(Bottom View) (Bottom View)
(No coil polarity)

\section*{Mounting Holes (Bottom View) \\ Tolerance: \(\pm 0.1\)}


Mounting Holes (Bottom View)

Track/Surface Mounting Sockets
P2RF-05-E
P2RF-05-E




\section*{P2RF-08}


Terminal Arrangement

M3 or 3.2 dia.
\(\underset{\text { (for Surface Mounting) }}{\text { Mounting Holes }}\)

PCB Power Relay - G2R

\section*{Back Connecting Sockets
P2R-05P (1-pole)}

P2R-05P (1-pole)


Terminal Arrangement Mounting Holes




P2R-08P (2-pole)


P2R-05A (1-pole)




Terminal Arrangemen


P2R-08A (2-pole)


Mounting Height of Relay with Socket


\section*{Mounting Track}


It is recommended to use a panel 1.6 to 2.0 mm thick.
```

L: Length
|\mp@code{lu}
\50 cm PFP-50N
1m PFP-100N2

```

End Plates
PFP-M

Precautions

\section*{■ Mounting}

When mounting a number of relays on a PCB , be sure to provide a minimum mounting space of 5 mm between the two juxtaposed relays as shown below.


The above minimum mounting space is necessary due to mutual thermal interference generated by the relays. This restriction may be ignored, however, depending on the operating conditions of the relays. Consult OMRON for details.
There is no restriction on the mounting direction of each relay on the PCB
When using this circuit, confirm the set and reset states and then take into account the circuit constant.

Mounting Plates
P2R-P


\section*{Next-generation PCB Relay Available in} 24 Models
- Low profile: 15.7 mm max. in height
- Contains no lead inside and features cadmium-free contacts ensuring environment-friendly use.
- Conforms to VDE0435 (VDE approval: C250 insulation grade for flux protection models; B400 insulation grade for fully sealed models), UL508 and CSA22.2.
- Meets VDE0700 requirements for household products according to VDE0110.
- Clearance and creepage distance: \(10 \mathrm{~mm} / 10 \mathrm{~mm}\).
- Tracking resistance: CTI>250
(Both standard and class F type)
- UL1446 Class F Coil Insulation system available.
- High sensitivity: 400 mW

Ordering Information
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Classification}} & \multirow[t]{2}{*}{Enclosure ratings} & \multicolumn{4}{|c|}{Contact form} \\
\hline & & & SPST-NO & SPDT & DPST-NO & DPDT \\
\hline \multirow[t]{4}{*}{Standard} & \multirow[t]{2}{*}{General-purpose} & Flux protection & G2RL-1A & G2RL-1 & G2RL-2A & G2RL-2 \\
\hline & & Fully sealed & G2RL-1A4 & G2RL-14 & G2RL-2A4 & G2RL-24 \\
\hline & \multirow[t]{2}{*}{High-capacity} & Flux protection & G2RL-1A-E & G2RL-1-E & -- & --- \\
\hline & & Fully sealed & G2RL-1A4-E & G2RL-14-E & -- & --- \\
\hline \multirow[t]{4}{*}{Class-F} & \multirow[t]{2}{*}{General-purpose} & Flux protection & G2RL-1A-CF & G2RL-1-CF & G2RL-2A-CF & G2RL-2-CF \\
\hline & & Fully sealed & G2RL-1A4-CF & G2RL-14-CF & G2RL-2A4-CF & G2RL-24-CF \\
\hline & \multirow[t]{2}{*}{High-capacity} & Flux protection & G2RL-1A-E-CF & G2RL-1-E-CF & -- & --- \\
\hline & & Fully seale & 2RL-1A4-E & 62RL-14- & -- & \\
\hline
\end{tabular}

Note: When ordering, add the rated coil voltage to the model number.
Example: G2RL-1A 12 VDC
Rated coil voltage

\section*{Model Number Legend}

G2RL- \(\square \square \square-\square-\square\)
1. Number of Poles

1: 1 pole
2: 2 poles
2. Contact Form

None: \(\square\) PDT
. A. \(\square P S T-N O\)
3. Enclosure Ratings

None: Flux protection
4: \(\quad\) Fully sealed


미장
\begin{tabular}{|c|c|c|}
\hline Number of poles & 1 pole & 2 poles \\
\hline Contact material & \(\mathrm{AgSnO}_{2}\) & AgNi \\
\hline Load & Resistive load (cos \(\hat{\text { }} \mathbf{= 1}\) ) & Resistive load (cos \(\phi=1\) ) \\
\hline Rated load & \(12 \mathrm{~A}(16 \mathrm{~A})\) at 250 VAC 12 A (16 A) at 24 VDC (See note 2.) & 8 A at 250 VAC 8 A at 30 VDC (See note 2.) \\
\hline Rated carry current & 12 A (16 A)
(See note 2.) & \[
8 \mathrm{~A}\left(70^{\circ} \mathrm{C}\right) / 5 \mathrm{~A}\left(85^{\circ} \mathrm{C}\right)
\]
(See note 2.) \\
\hline Max. switching voltage & \multicolumn{2}{|l|}{\(440 \mathrm{VAC}, 300 \mathrm{VDC}\)} \\
\hline Max. switching current & 12 A (16 A) & 8 A \\
\hline Max. switching power & \(3,000 \mathrm{VA}(4,000 \mathrm{VA})\) & \(2,000 \mathrm{VA}\) \\
\hline
\end{tabular}

Note: 1. Values in parentheses are those for the high-capacity model
2. Contact your OMRON representative for the ratings on fully sealed models
- Characteristics
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{3}{|c|}{1 pole} & 2 poles \\
\hline Contact resistance & \multicolumn{4}{|l|}{100 m 2 max.} \\
\hline Operate (set) time & \multicolumn{4}{|l|}{15 ms max. (Approx. 7 ms typical)} \\
\hline Release (reset) time & \multicolumn{4}{|l|}{5 ms max. (Approx. 2 ms typical)} \\
\hline Max. operating frequency & \multicolumn{4}{|l|}{\begin{tabular}{ll} 
Mechanical: & 18,000 operation \(/ \mathrm{hr}\) \\
Electrical: & 1,800 operation \(/ \mathrm{hr}\) at rated load
\end{tabular}} \\
\hline Insulation resistance & \multicolumn{4}{|l|}{\(1,000 \mathrm{M} 2\) min. (at 500 VDC )} \\
\hline Dielectric strength & \multicolumn{3}{|l|}{\(5,000 \mathrm{VAC}, 1\) min between coil and contacts \(1,000 \mathrm{VAC}, 1\) min between contacts of same polarity} & \begin{tabular}{l}
\(5,000 \mathrm{VAC}, 1\) min between coil and contacts \\
2,500 VAC, 1 min between contacts of different polarity \(1,000 \mathrm{VAC}, 1\) min between contacts of same polarity
\end{tabular} \\
\hline Impulse withstand voltage & \multicolumn{4}{|l|}{\(10 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})\) between coil and contact} \\
\hline Vibration resistance & \multicolumn{4}{|l|}{\begin{tabular}{ll} 
Destruction: & 10 to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude) \\
Malfunction: & 10 to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude)
\end{tabular}} \\
\hline Shock resistance & \multicolumn{4}{|l|}{\begin{tabular}{lll} 
Destuction: & \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) & \\
Malfunction: & Energized: & \\
& Not energized: & \(100 \mathrm{~m} / \mathrm{s}^{2}\) \\
& \(100 \mathrm{~m} / \mathrm{s}^{2}\)
\end{tabular}} \\
\hline Endurance (Mechanical) & \multicolumn{4}{|l|}{20,000,000 operations (at 18,000 operations/hr)} \\
\hline Ambient temperature & \multicolumn{4}{|l|}{\begin{tabular}{ll} 
Operating: & \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) (with no icing) \\
Storage: & \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) (with no icing)
\end{tabular}} \\
\hline Ambient humidity & \multicolumn{4}{|l|}{5\% to 85\%} \\
\hline Weight & \multicolumn{4}{|l|}{Approx. 12 g} \\
\hline Packaging & \multicolumn{4}{|l|}{Standard: 20 relays/stick} \\
\hline
\end{tabular}

Packaging Standard: 20 relays/stick

\section*{Approved Standards}

UL508 (File No. E41643)
\begin{tabular}{|c|c|c|c|}
\hline Model & Contact form & Coil ratings & Contact ratings \\
\hline G2RL-1A & SPST-NO & \multirow[t]{6}{*}{31048 VDC} & 12 A at 250 VAC (General use) \\
\hline G2RL-1 & SPDT & & 12 A at 24 VDC (Resistive) \\
\hline G2RL-1AE & SPST-NO (High capacity) & & 16 A at 250 VAC (General use) \\
\hline G2RL-1-E & SPDT (High capacity) & & \\
\hline G2RL-2A & DPST-NO & & 8 A at 277 VAC (General use) \\
\hline G2RL-2 & DPDT & & A A at 30 VDC (Resisitive) \\
\hline
\end{tabular}

\section*{CSA C22.2 (No. 14) (File No. LR31928)}
\begin{tabular}{|c|c|c|c|}
\hline Model & Contact form & Coil ratings & Contact ratings \\
\hline G2RL-1A & SPST-NO & \multirow[t]{6}{*}{31048 VDC} & 12 A at 250 VAC (General use) \\
\hline G2RL-1 & SPDT & & 12 A at 24 VDC (Resisitive) \\
\hline G2RL-1A-E & SPST-NO (High capacity) & & 16 A at 250 VAC (General use)
16 A at 24 VDCC (Resistive) \\
\hline G2RL-1-E & SPDT (High capacity) & & 16 A at 24 VDC (Resistive) \\
\hline G2RL-2A & DPST-NO & & 8 A at 277 VAC (General use) \\
\hline G2RL-2 & DPDT & & \\
\hline \multicolumn{4}{|l|}{VDE0435 (Licence No. 119650)} \\
\hline Model & Contact form & Coil ratings & Contact ratings \\
\hline \multirow[t]{3}{*}{G2RL} & 1 pole & \multirow[t]{3}{*}{5, 12, 18, 22, 24, 48 VDC} & 12 A at 250 VAC ( \(\cos \phi=1\) ) 12 A at \(24 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})\) AC15: 3 A at 240 VAC DC13: 2.5 A at \(24 \mathrm{VDC}, 50 \mathrm{~ms}\) \\
\hline & 1 pole (High capacity) & & 16 A at \(250 \mathrm{VAC}(\cos \phi=1)\)
16 A at \(24 \mathrm{VDC}(\mathrm{R}=0 \mathrm{~ms})\) AC15: 3 A at 240 VAC (NO) 1.5 A at 240 VAC (NC) DC13: 2.5 A at 24 VDC ( NO ), 50 ms \\
\hline & 2 poles & & 8 A at \(250 \mathrm{VAC}(\cos \phi=1)\) 8 A at 24 VDC (LR \(=0 \mathrm{~ms}\) ) AC15: 1.5 A at 240 VAC DC13: 2 A at \(30 \mathrm{VDC}, 50 \mathrm{~ms}\) \\
\hline
\end{tabular}

Engineering Data


Switching voltage (V)


Ambient Temperature ( \({ }^{\circ} \mathrm{C}\) )


Switching voltage (V)


The maximum coil voltage refers to
the maximum value in the maximum value in a varying
range of operating power volta
not a range of perating power
not a continuous voltage.

Note: Contact your OMRON representative for the data on fully sealed models.

PCB Power Relay - G2RL
OmROn
Electrical Endurance Data
\begin{tabular}{|c|c|c|}
\hline G2RL-1-E & 16 A at \(250 \mathrm{VAC}(\cos \phi=1)\)
16 A at 24 VDC
8 A at \(250 \mathrm{VAC}(\mathrm{cos} \phi=0.4)\)
8 A at \(30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})\) & \begin{tabular}{l}
30,000 operations min. \\
30,000 operations min. \\
200,000 operation min. (Normally open side operation) \\
10,000 operation min. (Normally open side operation)
\end{tabular} \\
\hline G2RL-1 & 12 A at \(250 \mathrm{VAC}(\cos \phi=1)\)
12 A at 24 VDC
5 A at \(250 \mathrm{VAC}(\cos \phi=0.4)\)
5 A at \(30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})\) & \begin{tabular}{l}
50,000 operations min. \\
30,000 operations min \\
150,000 operation min. (Normally open side operation) \\
20,000 operation min. (Normally open side operation)
\end{tabular} \\
\hline G2RL-2 & \[
\begin{aligned}
& 8 \mathrm{~A} \text { at } 250 \mathrm{VAC}(\cos \phi=1) \\
& 8 \mathrm{~A} \text { at } 30 \mathrm{VDC}
\end{aligned}
\] & 30,000 operations min. 30,000 operations min. \\
\hline G2RL-1A-E & Pilot duty (A300), 250 VAC
Pilot duty (A300), 125 VAC & 250,000 operations min .
150,000 operations min . \\
\hline
\end{tabular}

Note: The results shown reflect values measured using very severe test conditions i.e., Duty: 1 sec ON \(/ 1 \mathrm{sec}\) OFF,
Electrical endurance will vary depending on the test conditions. Contact your OMRON representative if you require more detailed information for the electrical endurance under your test conditions.

Dimensions
Note: All units are in millimeters unless otherwise indicated






\section*{Precautions}

Basic Information
Before actually committing any component to a mass-production

 me many handling and will still perform as expected after surviving the many handling and mounting processes involved in mass pro-
duction. Also, even though OMRON relays are individually tested number of times, and each meets strict requirements, a certain test ing tolerance is permissible. When a high-precision product uses many components, each depends upon the rated performanc thresholds of the other components. Thus, the overall performanc
olerance may accumulate into undesirable levels. To avoid prob lems, always conduct tests under the actual application conditions

\section*{General}

To maintain the initial characteristics of a relay exercise care that it is not dropped or mishandled. For the same reason, do not remove Aveoid using the relay; otherwise, the characteristics may degrade. Avoid using the relay in an atmosphere containing sulfuric acid
\(\left(\mathrm{SO}_{2}\right)\), hydrogen sulfide \(\left(\mathrm{H}_{2} \mathrm{~S}\right)\), or other corrosive gases. Do continuously apply a voltage higher than the rated maximum volt age to the relay. Never try to operate the relay at a voltage and a current other than those rated.
Do not use the relay at temperatures higher than that specified in the catalog or data sheet

Impulse Withstand Voltage as High as 10 kV with 4 kV Dielectric
Strength: Ideal for Power Supply

\section*{Switching}
- Creepage distance of 8 mm min. meets VDE C250.
Dielectric strength of 4,000 VAC min.
- SPST-NO types conform to TV-8 rating.
- DPST-NO types conform to TV-5 rating.

■ International 2.54 mm terminal pitch.


미(ㅏㅇ(ㅇ)옹

Ordering Information
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Contacts } & \multicolumn{1}{c|}{ SPST-NO } & \multicolumn{1}{c|}{ DPST-NO } \\
\hline Mounting style & Terminals & & \\
\hline General purpose & PCB (straight) & G4W-1112P-US-TV8 & G4W-2212P-US-TV5 \\
\hline \multirow{2}{*}{ Upper mounting } & Solder & G4W-11123A-US-TV8 & G4W-22123A-US-TV5 \\
\cline { 2 - 4 } & Quick-connect & G4W-11123T-US-TV8 & G4W-22123T-US-TV5 \\
\hline
\end{tabular}

Note: When ordering, add the rated coil voltage to the model number. Example: G4W-11123A-US-TV8 12 VDC

\section*{Rated coil voltage}

Model Number Legend
G4W - \(\square\)
\(\square\) \(\square-\square-\square-\square \square\) VDC
1. Contact Form

11: SPST-NO
2. Contact Type
2. Contact Type
3. Enclosure Ratings

2: Unsealed
4. Mounting Style

None. Upper mounting bracket
5. Terminals

P: Straight PCB
\(\begin{array}{ll}\text { P: } & \text { Straight } \\ \text { A: } & \text { Solder }\end{array}\)
6. Approved Standards US: UL, CSA certified
7. TV Ratings TV5: TV-5
8. Special Function

None: General-purpose
Z: Full-wave rectifier
Rated Coil Voltage
\(12,24,100\) VDC

Specifications
\(\square\) Coil Ratings
Single-side Stable Type
\begin{tabular}{|c|c|c|c|}
\hline Rated voltage & 12 VDC & 24 VDC & 100 VDC \\
\hline Rated current & 66.7 mA & 33.3 mA & 8 mA \\
\hline Coil resistance & \(180 \Omega\) & \(720 \Omega\) & 12,500 \(\Omega\) \\
\hline Coil inductance Armature OFF & 0.93 & 3.7 & 61.8 \\
\hline (H) (ref. value) Armature ON & 1.65 & 6.4 & 106 \\
\hline Must operate voltage & \multicolumn{3}{|l|}{80\% max. of rated voltage} \\
\hline Must release voltage & \multicolumn{3}{|l|}{10\% min. of rated voltage} \\
\hline Max. voltage & \multicolumn{3}{|l|}{\(130 \%\) of rated voltage (at \(23^{\circ} \mathrm{C}\) )} \\
\hline Power consumption & \multicolumn{3}{|l|}{Approx. 800 mW} \\
\hline
\end{tabular}

Note: 1. The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 15 \%\),
2. Operating characteristics are measured at a coil temperature of \(23^{\circ} \mathrm{C}\).

\section*{■ Contact Ratings}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{2}{|r|}{SPST-NO} & \multicolumn{2}{|c|}{DPST-NO} \\
\hline Load & Resistive load
\[
(\cos \varnothing=1)
\] & Inductive load ( \(\cos \varnothing=0.4 ; L / R=7 \mathrm{~ms}\) ) & Resistive load
\[
(\cos \varnothing=1)
\] & Inductive load
\[
\cos \varnothing=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})
\] \\
\hline Rated load & 15 A at 250 VAC ; 15A at 24 VDC & 10 A at 250 VAC ; 7.5A at 24 VDC & 10 A at 250 VAC ; 10 A at 24 VDC ; & 7.5 A at 250 VAC ; 5 A at 24 VDC \\
\hline Contact material & \multicolumn{4}{|l|}{AgCdo} \\
\hline Rated carry current & \multicolumn{2}{|l|}{15A} & \multicolumn{2}{|l|}{10A} \\
\hline Max. switching voltage & \multicolumn{4}{|l|}{250 VAC, 125 VDC} \\
\hline Max. switching current & \multicolumn{2}{|l|}{15A} & \multicolumn{2}{|l|}{10A} \\
\hline Max. switching power & 3,750 VA, 375 W & 2,500 VA, 255 W & 2,500 VA, 240 W & 1,850 VA, 120 W \\
\hline Failure rate (reference value) & \multicolumn{4}{|l|}{100 mA at 5 VDC} \\
\hline
\end{tabular}

\section*{- Characteristics}
\begin{tabular}{|c|c|}
\hline Contact resistance & \(30 \mathrm{~m} \Omega\) max. \\
\hline Operate time & \(20 \mathrm{~ms} \mathrm{max}. \mathrm{(mean} \mathrm{value:} \mathrm{approx}\).13 ms ) \\
\hline Release time & 5 ms max. (mean value: approx. 2.5 ms ) \\
\hline Bounce time & Operate: approx. 3 ms \\
\hline Max. Operating Frequency & \begin{tabular}{l}
Mechanical: 18,000 operations/hr \\
Electrical: 1,800 operations/hr (under rated load)
\end{tabular} \\
\hline Insulation resistance & \(100 \mathrm{M} \Omega\) max. (at 500 VDC ) \\
\hline Dielectric strength & \begin{tabular}{l}
4,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts \\
2,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between contacts of different polarities (DPST-NO) \\
\(1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity
\end{tabular} \\
\hline Impulse withstand voltage & \(10,000 \mathrm{~V}(1.2 \times 50 \mu \mathrm{~s})\) between coil and contacts \\
\hline Vibration resistance & Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude) Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75 \mathrm{~mm}\) single amplitude ( 1.5 mm double amplitude) \\
\hline Shock resistance & \begin{tabular}{l}
Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) \\
Malfunction: \(150 \mathrm{~m} / \mathrm{s}^{2}\)
\end{tabular} \\
\hline Endurance & Mechanical: 5,000,000 operations min. (at 18,000 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr) \\
\hline Ambient temperature & Operating: \(-25^{\circ} \mathrm{C}\) to \(55^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient humidity & Operating: 5\% to \(85 \% \mathrm{RH}\) \\
\hline Weight & Approx. 29 g \\
\hline
\end{tabular}
- Approved Standards

UL508 (File No. E41643)/CSA C22.2 No. 14 (File No.LR31928)
\begin{tabular}{|c|c|c|c|}
\hline Model & Contact Form & Coil ratings & Contact ratings \\
\hline G4W-1112P-US-TV8 G4W-11123A-US-TV8 G4W-11123T-US-TV8 & SPST-NO & 6 to 120 VDC & \begin{tabular}{l}
\(15 \mathrm{~A}, 250\) VAC (general use) \\
15 A, 24 VDC \\
TV-8 \\
\(1 / 2 \mathrm{hp}, 125\) VAC \\
\(1 \mathrm{hp}, 250\) VAC \\
\(3 / 4 \mathrm{hp}, 240\) VAC
\end{tabular} \\
\hline G4W-2212P-US-TV5 G4W-22123A-US-TV5 G4W-22123T-US-TV5 & DPST-NO & & \begin{tabular}{l}
\(15 \mathrm{~A}, 250\) VAC (general use) 10 A, 250 VAC (general use) 15 A, 24 VDC TV-5 \\
\(1 / 2 \mathrm{hp}, 250\) VAC \\
1/3 hp, 125/250 VAC
\end{tabular} \\
\hline
\end{tabular}

\section*{SEMKO (File No. 9346122, 9223128)}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Contact form } & \multicolumn{1}{c|}{ Coil ratings } & \multicolumn{1}{c|}{ Contact ratings } \\
\hline SPST-NO & \(6-100 \mathrm{VDC}\) & \(15 / 120 \mathrm{~A}, 250 \mathrm{VAC}\) \\
\hline DPST & \(6-120 \mathrm{VDC}\) & \(10 / 80 \mathrm{~A}, 250 \mathrm{VAC}\) \\
\hline
\end{tabular}

\section*{VDE0435 (File No.1906, No.1907)}
\begin{tabular}{|c|c|c|}
\hline Contact form & Coil ratings & Contact ratings \\
\hline SPST-NO & 6, 12, 24, 48, 100 VDC & \begin{tabular}{l}
15 A, 250 VAC ( \(\cos \varnothing=1.0\) ) 10 A 250 VAC \((\cos \varnothing=0.4)\) \(15 \mathrm{~A}, 24 \mathrm{VDC}\) ( 0 ms ) \\
7.5 A, \(24 \mathrm{VDC}(40 \mathrm{~ms})\)
\end{tabular} \\
\hline DPST-NO & & \(10 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varnothing=1.0)\) \(7.5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varnothing=0.4)\) \(10 \mathrm{~A}, 24 \mathrm{VDC}\) ( 0 ms ) 5 A, 24 VDC ( 40 ms ) \\
\hline
\end{tabular}

\section*{Engineering Data}

\section*{Maximum Switching Powe}


Switching voltage (V)
G4W-2212P-US-TV5/-22123A-US-TV5/-22123T-US-TV5


Switching voltage (V)

G4W-1112P-US-TV8/-11123A-US-TV8/-1123T-US-TV8
G4W-2212P-US-TV5/-22123A-US-TV5/-22123T-US-TV5


Switching current (A)

\section*{Ambient Temperature vs
Maximum Coil}


Note: The maximum coill voltage refers to the maxi-
mum value in a varying range of operating power voltage, not a continuous voltage

Ambient temperature \(\left({ }^{\circ} \mathrm{C}\right)\)


Terminal Arrangement/Internal Connections (Bottom V


G4W-11123T-US-TV-8


Compact, Low-cost 30-A Power
Relay for PC Board or Panelmounted Applications
- Compact, yet capable of switching up to 30-A loads.

■ Complies with UL873 and UL508 column A spacings ( \(1 / 84\) through air, \(1 / 4\) " over surface).
■ UL Class F insulation standard.
- Withstands of up to \(6,000 \mathrm{~V}\) under \(1.250 \mu \mathrm{~s}\) impulse wave or ring wave.
- A selection of contact forms: SPDT and SPST-NO.

- Qu

Quick-connect terminals versions ideal for PC
board and panel mounting.
■ Flanged mounting available.
- Ideal for home and industrial appliances,

HVAC (heating, ventilating, and air
conditioning), and many other applications.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Classification} & \multirow[t]{2}{*}{Contact Form} & \multicolumn{3}{|c|}{Enclosure Rating} \\
\hline Mounting style & Terminals & & Opem & Unsealed & Fully Sealed \\
\hline \multirow[t]{4}{*}{PCB mounting} & \multirow[t]{4}{*}{PCB} & SPST-NO & G8P-1AP & G8P-1A2P & G8P-1A4P \\
\hline & & SPDT & G8P-1CP & G8P-1C2P & G8P-1C4P \\
\hline & & SPST-NO & G8P-1ATP & G8P-1A2TP & G8P-1A4TP \\
\hline & & SPDT & G8P-1CTP & G8P-1C2TP & G8P-1C4TP \\
\hline \multirow[t]{2}{*}{Flanged mounting} & \multirow[t]{2}{*}{Quick-connect} & SPST-NO & - & G8P-1A2T-F & - \\
\hline & & SPDT & - & G8P-1C2T-F & - \\
\hline
\end{tabular}

Note: 1. The contacts described above are AgCdO.
2. When ordering, add the rated coil voltage to the model number

Example: G8P-1AP 12 VDC
\(\square\) Rated coil voltage
Model Number Legend
G8P - \(\underset{1}{\square} \frac{\square}{2} \frac{\square}{3} \frac{\square}{4}-\frac{\square}{5} \frac{\square}{6}\) VDC
. Number of Poles 1: 1 pole
2. Contact Form

A: SPST-NO
C: SPDT
3. Enclosure Ratings None: Open \(\begin{array}{ll}\text { 2: } & \text { Unsealed } \\ \text { 4: } & \text { Fully-Sealed }\end{array}\)
4. Terminals

P: Straight PCB for contacts and coil
T: Quick-connect (\#250 terminals for contacts
TP: Quick-connect (\#250 terminals) and straight PCB for contacts, and straight PCB for coil
5. Mounting

None: PCB mounting
F: Flanged mounting
6. Rated Coil Voltage
\(5,9,12,24,48,110\) Other rated coil voltages available.

Specifications

\section*{- Coil Ratings}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Rated voltage & 5 VDC & 9 VDC & 12 VDC & 24 VDC & 48 VDC & 110 VDC \\
\hline Rated current & 185 mA & 93 mA & 77 mA & 36 mA & 19 mA & 9 mA \\
\hline Coil resistance & \(27 \Omega\) & \(97 \Omega\) & \(155 \Omega\) & \(660 \Omega\) & \(2,480 \Omega\) & \(12,400 \Omega\) \\
\hline Must operate voltage & \(75 \%\) max. of rated voltage & \\
\hline Must release voltage & \(10 \%\) min. of rated voltage & \\
\hline Max. voltage & \(120 \%\) of rated voltage & \\
\hline Power consumption & Approx. 900 mW &
\end{tabular}

Note: The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with tolerances of \(\pm 10 \%\).
- Contact Ratings
\begin{tabular}{|c|c|c|}
\hline Item & SPST-NO & SPDT \\
\hline Load & Resistive load ( \(\cos \theta=1\) ) & \\
\hline Rated load & 30 A at 250 VAC ; 20 A at 28 VDC & \(20 \mathrm{~A} / 10 \mathrm{~A}^{*}\) at 250 VAC ; \(20 \mathrm{~A} / 10 \mathrm{~A}^{*}\) at 28 VDC \\
\hline Contact material & AgCdo & \\
\hline Rated carry current & 30 A & 20 A/10 A* \\
\hline Max. switching voltage & \(250 \mathrm{VAC}, 28 \mathrm{VDC}\) & \\
\hline Max. switching current & AC: \(30 \mathrm{~A}, \mathrm{DC}: 20 \mathrm{~A}\) & AC: 20 A/10 A, DC: 20 A/10 A* \\
\hline Max. switching capacity & 7,500 VA, 560 W & 5,000/2,500 VA, 560/280 W* \\
\hline
\end{tabular}

Note: *NO contact/NC contact.

\section*{■ Characteristics}
\begin{tabular}{|c|c|}
\hline \(100 \mathrm{~m} \Omega\) max. & \\
\hline Operate time & 15 ms max. \\
\hline Release time & 10 ms max. \\
\hline Max. Operating Frequency & Mechanical: 18,000 operations/hr Electrical: 360 operations/hr (under rated load) \\
\hline Insulation resistance & \(100 \mathrm{M} \Omega\) min. (at 500 VDC\()\) \\
\hline Dielectric strength & 2,500 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts \(1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity \\
\hline Impulse withstand voltage & 6,000 V ( \(1.2 / 50 \mu \mathrm{~s}\) ) between coil and contacts \\
\hline Vibration resistance & Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.825-\mathrm{mm}\) single amplitude ( \(1.65-\mathrm{mm}\) double amplitude) for 2 hours Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.825-\mathrm{mm}\) single amplitude ( \(1.65-\mathrm{mm}\) double amplitude) for 5 minutes \\
\hline Shock resistance & Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) (approx. 100G) Malfunction: \(100 \mathrm{~m} / \mathrm{s}^{2}\) (approx. 10G) \\
\hline Endurance & Mechanical: 10,000,000 operation min. (at 18,000 operations/hr) Electrical: 100,000 operations min. (at rated load) \\
\hline Ambient temperature & Operating: -55 \({ }^{\circ} \mathrm{C}\) to \(105^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient humidity & Operating: 5\% to 85\% \\
\hline Weight & G8P-1CP: Approx. 21 g, G8P-1CTP: Approx. 24 g G8P-1C4P: Approx. 28 g, G8P-1C4TP: Approx. 31 g \\
\hline
\end{tabular}
- Approved Standards

UL (File No. E41643)/CSA (File No. LR34815-101)
\begin{tabular}{|c|c|c|c|}
\hline Type & Contact form & Coil ratings & Contact ratings \\
\hline G8P-1A & SPST-NO & 5 to 110 VDC & \begin{tabular}{l}
30 A, 277 VAC (G.P./Res.) \\
\(30 \mathrm{~A}, 250 \mathrm{VAC}, 100 \mathrm{k}\) ops. (Res.) \\
\(20 \mathrm{~A}, 120-240 \mathrm{VAC}, 70^{\circ} \mathrm{C}, 100 \mathrm{k}\) ops. (G.P./Res.) \\
20 A, 28 VDC (Res.) \\
\(20 \mathrm{~A}, 240 \mathrm{VAC}, 105^{\circ} \mathrm{C}, 100 \mathrm{k}\) ops. (Res.) \\
\(1 \mathrm{hp}, 125-250\) VAC \\
\(2 \mathrm{hp}, 250\) VAC \\
A300 Pilot Duty \\
12FLA/72LRA, 250 VAC, 100 k ops. \\
20 FLA/96 LRA, 125 VAC, 100 k ops. \\
5 A, 250 VAC (Tungsten) \\
\(20 \mathrm{~A}, 120-277\) VAC (Ballast)
\end{tabular} \\
\hline G8P-1C & SPDT & 5 to 110 VDC & \begin{tabular}{l}
30 A/30 A, 250 VAC (Res.) \\
\(30 \mathrm{~A} / 30 \mathrm{~A}, 277 \mathrm{VAC}, 40^{\circ} \mathrm{C}, 100 \mathrm{k}\) opns (NO) and \\
50 k opns (NC) \\
\(20 \mathrm{~A} / 15 \mathrm{~A}, 120-240 \mathrm{VAC}, 105^{\circ} \mathrm{C}, 100 \mathrm{k}\) ops. (Res.) \\
\(20 \mathrm{~A} / 10 \mathrm{~A}, 120-240 \mathrm{VAC}, 70^{\circ} \mathrm{C}, 100 \mathrm{k}\) ops. (G.P./Res.) \\
20 A/10 A, 28 VDC (Res.) \\
\(1 / 2 \mathrm{hp} / 1 / 2 \mathrm{hp}, 125\) VAC, 100 k ops. \\
\(2 \mathrm{hp} / 1 / 2 \mathrm{hp}, 250\) VAC \\
\(1 \mathrm{hp} / 1 / 4 \mathrm{hp}, 125\) VAC \\
B150 Pilot Duty \\
5 A/3 A, 250 VAC (Tungsten) \\
6 A/3 A, 277 VAC (Ballast)
\end{tabular} \\
\hline
\end{tabular}

\section*{Engineering Data}

\section*{Maximum Switching capacity}


Rated operating voltage ( V )
Endurance
SPST-NO


SPDT


Rated operating voltage (V)
SPDT


Load current (A)

Dimensions
Note: All units are in millimeters unless otherwise indicated.
■ Open Types

\section*{G8P-1CP/1AP}


G8P-1CTP/1ATP


Connections ections (Bottom View)


Terminal Arrangement/Interna Connections (Bottom View)


Mounting Holes (Bottom View)

3.5

Note: Pin \#4 is omitted on G8P-1AP.


\section*{■ Fully-Sealed Types/Unsealed Types}


\section*{PCB Power Relay - G8P}

\section*{\(■\) Flange Mounting Types}


Mounting Holes (Bottom View)


Note: Pin \#4 is omitted on G8P-1A2T-F


Note: Allow air circulation within the sealed type G8P by removing the knock off nib from the cover after soldering and cleaning is complete.

Precautions

\footnotetext{
Sealed Relays
Remove the vent hole tape seal from the cover after all soldering and cleaning have been completed to allow air circulation within sealed G8P Relays.
sealed G8P Relays.
}

Miniature Single-pole Relay with

\section*{80-A Surge Current and 20-A}

\section*{Switching Current}
- Ideal for motor switching.
- Miniature, relay with high switching power and long endurance.
- Creepage distance conforms to UL and CSA standards.


Highly noise-resistive insulation materials employed.
- Standard model available with flux protection construction.
Ordering Information
\begin{tabular}{|c|c|c|}
\hline Classification & Contact Form & Model \\
\hline \#250 tab terminals/PCB coil terminals & SPST-NO & G4A-1A-E \\
\cline { 1 - 2 } PCB terminals/PCB coil terminals & & G4A-1A-PE \\
\hline
\end{tabular}

Note: When ordering, add the rated coil voltage to the model number.
Example: G4A-1A-E 12 VDC
Rated coil voltage
Model Number Legend

\section*{G4A \(\square \square-\square \square \square=\square\) VDC}
1. Number of Poles
4. Special Function

E: For long endurance
5. Rated Coil Voltage
\(5,12,24 \mathrm{VDC}\)
2. Contact Form
3. Terminals

None: \#250 tab/PCB coil terminals
P: Straight PCB/PCB terminals
Specifications

\section*{- Coil Rating}
\begin{tabular}{|l|l|l|l|}
\hline Rated voltage & 5 VDC & 12 VDC & 24 VDC \\
\hline Rated current & 180 mA & 75 mA & 37.5 mA \\
\hline Coil resistance & \(27.8 \Omega\) & \(160 \Omega\) & \(640 \Omega\) \\
\hline \begin{tabular}{l} 
Coil inductance \\
(ref. value)
\end{tabular} & Armature OFF & - & 0.8 H \\
\hline Armature ON & - & 1.1 H & 4.5 H \\
\hline Must operate voltage & \(70 \%\) of rated voltage max. & \\
\hline Must release voltage & \(10 \%\) of rated voltage min. & \\
\hline Max. permissible voltage & \(160 \%\) of rated voltage at \(\left(23^{\circ}\right)\) & \\
\hline Power consumption & Approx. 0.9 W & \\
\hline
\end{tabular}

Note: 1. The rated current and coil resistance are measured at a coil temperature of \(23^{\circ} \mathrm{C}\) with a tolerance of \(\pm 10 \%\).
2. Operating characteristics are measured at a coil temperature of \(23^{\circ} \mathrm{C}\).
3. Max. permissible voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

\section*{- Contact Ratings}
\begin{tabular}{|c|c|c|c|}
\hline Rated load & \multicolumn{3}{|l|}{20 A at 250 VAC} \\
\hline Rated carry current & \multicolumn{3}{|l|}{20 A} \\
\hline Max. switching voltage & \multicolumn{3}{|l|}{250 VAC} \\
\hline Max. switching current & \multicolumn{3}{|l|}{20 A} \\
\hline Max. switching power & \multicolumn{3}{|l|}{\(5,000 \mathrm{VA}\)} \\
\hline Failure rate (ref. value) & \multicolumn{3}{|l|}{100 mA at 5 VDC} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Endurance \\
with Motor Load
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Load conditions} & Switching frequency & Electrical endurance \\
\hline \begin{tabular}{l}
250 VAC: \\
Inrush current: \(80 \mathrm{~A}, 0.3 \mathrm{~s}\) Break current: 20 A (cosø
\end{tabular} & \[
\begin{aligned}
& s .9=0.7) \\
& \hline 9)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ON: } 1.5 \mathrm{~s} \\
& \text { OFF: } 1.5 \mathrm{~s}
\end{aligned}
\] & 200,000 operations \\
\hline
\end{tabular}

\section*{With Overload}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Load conditions } & \multicolumn{1}{c|}{ Switching frequency } & \multicolumn{1}{c|}{ Electrical endurance } \\
\hline \begin{tabular}{l} 
250 VAC: \\
Inrush current: \(80 \mathrm{~A}(\cos \varnothing=0.7)\) \\
Break current: \(80 \mathrm{~A}(\operatorname{cosff} \sigma=0.7)\)
\end{tabular} & \begin{tabular}{l} 
ON: 1.5 s \\
OFF: 99 s
\end{tabular} & 1,500 operations \\
\hline
\end{tabular}

With Inverter Load
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Load conditions } & \multicolumn{1}{c|}{ Switching frequency } & \multicolumn{1}{c|}{ Electrical endurance } \\
\hline \begin{tabular}{l}
100 VAC: \\
Inrush current: \(200 \mathrm{~A}(0-\mathrm{P})\) \\
Break current: 20 A
\end{tabular} & \begin{tabular}{l} 
ON: 3 s \\
OFF: 5 s
\end{tabular} & 30,000 operations \\
\hline
\end{tabular}

\section*{■ Characteristics}
\begin{tabular}{|c|c|}
\hline Contact resistance & \(100 \mathrm{~m} \Omega\) max. \\
\hline Operate time & 20 ms max. \\
\hline Release time & 10 ms max. \\
\hline Max. Operating Frequency & Mechanical: 18,000 operations/hr \\
\hline Insulation resistance & \(1000 \mathrm{M} \Omega\) max. (at 500 VDC ) \\
\hline Insulation resistance & \(100 \mathrm{M} \Omega\) max. (at 500 VDC ) \\
\hline Dielectric strength & 4,500 VAC \(50 / 60 \mathrm{~Hz}\) for 1 min between coil and contacts 1,000 VAC \(50 / 60 \mathrm{~Hz}\) for 1 min between contacts of same polarity \\
\hline Shock resistance & \begin{tabular}{l}
Destruction: \(1,000 \mathrm{~m} / \mathrm{s}^{2}\) \\
Malfunction: \(200 \mathrm{~m} / \mathrm{s}^{2}\)
\end{tabular} \\
\hline Vibration resistance & Destruction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude (1.5-mm double amplitude) Malfunction: 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude ( \(1.5-\mathrm{mm}\) double amplitude) \\
\hline Endurance & Mechanical: 2,000,000 operations min. (at 18,000 operations/hr) Motor load: 100,000 operations min. (ON/OFF: 1.5 s ) Inverter load: 30,000 operations min. (ON: 3 s , OFF: 5 s) \\
\hline Ambient temperature & Operating: \(-20^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient humidity & Operating: 5\% to 85\% \\
\hline Weight & Approx. 25 g \\
\hline
\end{tabular}

Note: The data shown above are initial values.

Engineering Data


Switching current (A)
Dimensions
Note: All units are in millimeters unless otherwise indicated; dimensions shown in parentheses are in inches.

G4A-1A-E


G4A-1A-PE



Mounting Holes
(Bottom View)


Terminal Arrangement
IInternal Connections
ttom View)

*Average value


Precautions
Mounting
When mounting two or more relays side by side, provide a minimum space of 3 mm between relays.
Terminal Connection
The terminals fit FASTON receptacle 250 and are suitable for positive-lock mounting
Do not apply excessive force on the terminals when mounting or dismounting the relay
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{|c|}{ Receptacle terminals } & \multicolumn{1}{|c|}{ Positive housing } \\
\hline \#250 terminals (width: 6.35 mm ) & AMP 170333-1 (170327-1) & AMP 172076-1 natural color \\
& AMP 170334-1 (170328-1) & AMP 172076-4 yellow \\
& AMP 170335-1 (170329-1) & AMP 172076-5 green \\
& & AMP 172076-6 blue \\
\hline
\end{tabular}

Note: The numbers shown in parentheses are for air-feeding

\section*{DC Power Relays Capable of Interrupting High-voltage, High- \\ current Loads}
- A compact relay (73 x \(36 \times 67.2 \mathrm{~mm}\) (L x W x H)) capable of switching 400-V 60-A/100-A DC loads. (Capable of interrupting
600 A at 300 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt highcapacity loads. The sealed construction also requires no arc space, saves space, and helps ensure safe applications.
- Downsizing and optimum design allow no restrictions on the mounting direction.
- Terminal Cover and DIN Track Adapters are also available for industrial applications
■ UL/CSA approval pending.

\section*{Model Number Structure}

\section*{■ Model Number Legend}

G9EA- \(\frac{\square}{1}-\frac{\square}{2}-\frac{\square}{3}-\frac{\square}{4}\)
1. Number of Poles

1: 1 pole
2. Contact Form
3. Coil Terminals

B: M3.5 screw terminals
Blank: Lead Wire Output
4. Special Functions

CA: High-current conduction (100 A)
Note: Power-saving Models (with auxiliary contacts function) are scheduled to be added to the lineup as special function models.

Specifications

\section*{\(\square\) List of Models}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Models} & \multicolumn{2}{|r|}{Terminals} & \multirow[t]{2}{*}{Contact form} & \multirow[t]{2}{*}{Rated coil voltage} & \multirow[t]{2}{*}{Model} \\
\hline & Coil terminals & Contact terminals & & & \\
\hline \multirow[t]{2}{*}{Switching / current conduction models} & Screw terminals & \multirow[t]{4}{*}{Screw terminals} & \multirow[t]{4}{*}{SPST-NO} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\hline 12 VDC \\
24 VDC \\
48 VDC \\
60 VDC \\
100 VDC
\end{tabular}} & G9EA-1-B \\
\hline & Lead wires & & & & G9EA-1 \\
\hline \multirow[t]{2}{*}{High-current conduction models} & Screw terminals & & & & G9EA-1-B-CA \\
\hline & Lead wires & & & & G9EA-1-CA \\
\hline
\end{tabular}

Note: 1. Relays come with two M5 screws for the main terminals (contacts).
2. Relays with coil terminals and screw terminals come with two M3.5 screws.

\section*{- Ratings}

Coil
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Rated voltage & Rated current & Coil resistance & \begin{tabular}{c} 
Must-operate \\
voltage
\end{tabular} & \begin{tabular}{c} 
Must-release \\
voltage
\end{tabular} & \begin{tabular}{c} 
Max. Voltage \\
(see note 3)
\end{tabular} & \begin{tabular}{c} 
Power \\
consumption
\end{tabular} \\
\hline 12 VDC & 417 mA & \(28.8 \Omega\) & \begin{tabular}{l}
\(75 \%\) max. of \\
rated voltage
\end{tabular} & \begin{tabular}{l}
\(8 \%\) min. of rated \\
voltage
\end{tabular} & \begin{tabular}{l}
\(130 \%\) of rated \\
voltage
\end{tabular} & Approx. 5 W \\
\hline 24 VDC & 208 mA & \(115.2 \Omega\) & & & \\
\hline 48 VDC & 102 mA & \(469.3 \Omega\) & & & & \\
\hline 60 VDC & 86.2 mA & \(695.7 \Omega\) & & & & Approx. 5.2 W \\
\hline 100 VDC & 53.6 mA & \(1,864 \Omega\) & & & & Approx. 5.4 W \\
\hline
\end{tabular}

Note: 1. The figures for the rated current and coil resistance are for a coil temperature of \(23^{\circ} \mathrm{C}\) and have a tolerance of \(\pm 10 \%\).
1. The figures for the rated current and coil resistance are for a coil temperature or
2. The figures for the operating characteristics are for a coil temperature of \(23^{\circ} \mathrm{C}\).
2. The figures for the operating characteristics are for a coil temperature of \(23^{\circ} \mathrm{C}\).
3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil for period of 10 minutes at an ambient temperature of \(23^{\circ} \mathrm{C}\). It does not apply to continuous operation.
Contacts
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Item }} & \multicolumn{2}{c|}{ Rated current } \\
\cline { 2 - 3 } & \multicolumn{1}{|c|}{ G9EA-1(-B) } & \multicolumn{1}{c|}{ G9EA-1(-B)-CA } \\
\hline Rated load & 60 A at 400 VDC, 100 A at 120 VDC & 30 A at 400 VDC \\
\hline Rated carry current & 60 A & 100 A \\
\hline Maximum switching voltage & 400 V & 400 V \\
\hline Maximum switching current & 100 A & 30 A \\
\hline
\end{tabular}
- Characteristics
\begin{tabular}{|c|c|c|c|}
\hline & Item & G9EA-1(-B) & G9EA-1(-B)-CA \\
\hline \multicolumn{2}{|l|}{Contact resistance (see note 2)} & \(30 \mathrm{~m} \Omega\) max. ( \(0.6 \mathrm{~m} \Omega\) typical) & \(10 \mathrm{~m} \Omega\) max. ( \(0.3 \mathrm{~m} \Omega\) typical) \\
\hline \multicolumn{2}{|l|}{Contact voltage drop} & \begin{tabular}{l}
0.1 V max. \\
(for a carry current of 60 A )
\end{tabular} & \begin{tabular}{l}
0.1 V max. \\
(for a carry current of 100 A )
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Operate time} & \multicolumn{2}{|l|}{50 ms max.} \\
\hline \multicolumn{2}{|l|}{Release time} & \multicolumn{2}{|l|}{30 ms max.} \\
\hline \multirow[t]{2}{*}{Insulation resistance (see note 3.)} & Between coil \& contacts & \multicolumn{2}{|l|}{\(1,000 \mathrm{M} \Omega \mathrm{min}\).} \\
\hline & Between contacts of the same polarity & \multicolumn{2}{|l|}{1,000 M \(\Omega\) min.} \\
\hline \multirow[t]{2}{*}{Dielectric strength} & Between coil \& contacts & \multicolumn{2}{|l|}{\(2,500 \mathrm{VAC}, 1 \mathrm{~min}\)} \\
\hline & Between contacts of the same polarity & \multicolumn{2}{|l|}{\(2,500 \mathrm{VAC}, 1 \mathrm{~min}\)} \\
\hline \multicolumn{2}{|l|}{Impulse withstand voltage (See note 4.)} & \multicolumn{2}{|l|}{4,500 V} \\
\hline \multirow[t]{2}{*}{Vibration resistance} & Destruction & \multicolumn{2}{|l|}{10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude (Acceleration: 2.94 to \(88.9 \mathrm{~m} / \mathrm{s}^{2}\) )} \\
\hline & Malfunction & \multicolumn{2}{|l|}{10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude (Acceleration: 2.94 to \(88.9 \mathrm{~m} / \mathrm{s}^{2}\) )} \\
\hline \multirow[t]{2}{*}{Shock resistance} & Destruction & \multicolumn{2}{|l|}{\(490 \mathrm{~m} / \mathrm{s}^{2}\)} \\
\hline & Malfunction & \multicolumn{2}{|l|}{\(196 \mathrm{~m} / \mathrm{s}^{2}\)} \\
\hline \multicolumn{2}{|l|}{Mechanical endurance (See note 5.)} & \multicolumn{2}{|l|}{200,000 ops. min.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Electrical endurance (See note 6.)}} & \(120 \mathrm{VDC}, 100 \mathrm{~A}, 3,000\) ops. min. & \(400 \mathrm{VDC}, 30 \mathrm{~A}, 1,000\) ops. min. \\
\hline & & \(400 \mathrm{VDC}, 60 \mathrm{~A}, 3,000\) ops. min. & 120 VDC, 30 A, 2,500 ops. min. \\
\hline & & \(400 \mathrm{VDC}, 30 \mathrm{~A}, 30,000\) ops. min. & - \\
\hline \multicolumn{2}{|l|}{Short-time carry current} & 100 A (10 min) & \(150 \mathrm{~A}(10 \mathrm{~min})\) \\
\hline \multicolumn{2}{|l|}{Maximum interruption current} & 600 A at 300 VDC ( 5 times) & - \\
\hline \multicolumn{2}{|l|}{Overload interruption} & 180 A at 400 VDC (100 times min.) & 100 A at 120 VDC (150 times min.) \\
\hline \multicolumn{2}{|l|}{Reverse polarity interruption} & \multicolumn{2}{|l|}{-60 A at 200 VDC ( 1,000 times min.)} \\
\hline \multicolumn{2}{|l|}{Ambient operating temperature} & \multicolumn{2}{|l|}{-40 to \(70^{\circ} \mathrm{C}\) (with no icing or condensation)} \\
\hline \multicolumn{2}{|l|}{Ambient operating humidity} & \multicolumn{2}{|l|}{5\% to 85\%} \\
\hline \multicolumn{2}{|l|}{Weight Approx.} & \multicolumn{2}{|l|}{310 g} \\
\hline
\end{tabular}

Note: 1. The above values are initial values at an ambient temperature of \(23^{\circ} \mathrm{C}\) unless otherwise specified.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method
3. The insulation resistance was measured with a \(500-\mathrm{VDC}\) megohmmeter.
4. The impulse withstand voltage was measured with a JEC- 212 (1981) standard impulse voltage waveform ( \(1.2 \times 50 \mu \mathrm{~s}\) )
5. The mechanical endurance was measured at a switching frequency of 3,600 operations \(/ \mathrm{hr}\).
6. The electrical endurance was measured at a switching frequency of 60 operations \(/ \mathrm{hr}\)

■ G9EA-1(-B) Switching/Current Conduction Models

\section*{Maximum Switching} Capacity


Electrical Endurance
(Switching Performance)


Electrical Endurance (Interruption Performance)


Carry Current vs Energizing
Time


■ G9EA-1(-B)-CA High-current Conduction Models


\section*{- All G9EA-1 Models}

Must-operate Voltage and Must-release Voltage Distributions


Vibration Resistance


Time Characteristic Distributions


Shock Malfunction


The value atwich matunction occurred was


Vibration Malfunction



Dimensions
Note: All units are in millimeters unless otherwise indicated.
\(■\) Models with Screw Terminals
G9EA-1-B(-CA)

- Models with Lead Wires

G9EA-1(-CA)



Mounting Hole Dimensions
(TOP VIEW)



Options

\section*{■ Terminal Cover}

P9EA-C

* Dimensions of cutouts for wiring

■ DIN Track Adaptor
P9EA-D


\section*{DC Power Relays Capable of} Interrupting High-voltage, High-

\section*{current Loads}
- A compact relay ( \(98 \times 44 \times 86.7 \mathrm{~mm}\) (L x W x H)) capable of switching \(400 \mathrm{~V}, 200\) A DC loads. (Capable of interrupting
1,000 A at 400 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt highcapacity loads. The sealed construction also requires no arc space, saves space, and helps
 ensure safe applications.
Downsizing and optimum design allow no restrictions on the mounting direction.
- Terminal Cover is also available for industria applications.
■ UL/CSA approval pending
Model Number Structure

\section*{- Model Number Legend}

G9EC- \(\square=-\frac{\square}{2}-\frac{\square}{3}-\frac{\square}{4}\)
1. Number of Poles

1: 1 pole
2. Contact Form
3. Coil Terminals

B: M3.5 screw terminals (standard) Blank: Lead wire output
4. Special Functions

Note: Power-saving Models (with auxiliary contacts function) are scheduled to be added to the line-up as special function models.

Specifications
- List of Models
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Models} & \multicolumn{2}{|r|}{Terminals} & \multirow[t]{2}{*}{Contact form} & \multirow[t]{2}{*}{Rated coil voltage} & \multirow[t]{2}{*}{Model} \\
\hline & Coil terminals & Contact terminals & & & \\
\hline \multirow[t]{2}{*}{Switching / current conduction models} & Screw terminals & \multirow[t]{2}{*}{Screw terminals} & \multirow[t]{2}{*}{SPST-NO} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline 12 \mathrm{VDC} \\
& 24 \mathrm{VDC} \\
& 48 \mathrm{VDC} \\
& 60 \text { VDC } \\
& 100 \text { VDC }
\end{aligned}
\]} & G9EC-1-B \\
\hline & Lead wires & & & & G9EC-1 \\
\hline
\end{tabular}

Note: 1. Relays come with two M8 nuts for the main terminals (contacts).
2. Relays with coil terminals and screw terminals come with two M3.5 screws.

\section*{- Ratings}

Coil
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Rated voltage & Rated current & Coil resistance & \begin{tabular}{c} 
Must-operate \\
voltage
\end{tabular} & \begin{tabular}{c} 
Must-release \\
voltage
\end{tabular} & \begin{tabular}{c} 
Max. Voltage \\
(see note 3)
\end{tabular} & \begin{tabular}{c} 
Power \\
consumption
\end{tabular} \\
\hline 12 VDC & 938 mA & \(12.8 \Omega\) & \begin{tabular}{l}
\(75 \%\) max. of \\
rated voltage
\end{tabular} & \begin{tabular}{l}
\(8 \%\) min. of rated \\
voltage
\end{tabular} & \begin{tabular}{l}
\(110 \%\) of rated \\
voltage
\end{tabular} & Approx. 11 W \\
\hline 24 VDC & 469 mA & \(51.2 \Omega\) & & & \\
\hline 48 VDC & 234 mA & \(204.8 \Omega\) & & & & \\
\hline 60 VDC & 188 mA & \(320.0 \Omega\) & & & & \\
\hline 100 VDC & 113 mA & \(888.9 \Omega\) & & & & \\
\hline
\end{tabular}

Note: 1. The figures for the rated current and coil resistance are for a coil temperature of \(23^{\circ} \mathrm{C}\) and have a tolerance of \(\pm 10 \%\).
1. The figures for the rated current and coil resistance are for a coil temperature
2. The figures for the operating characteristics are for a coil temperature of \(23^{\circ} \mathrm{C}\).
3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil for period of 10 minutes at an ambient temperature of \(23^{\circ} \mathrm{C}\). It does not apply to continuous operation.
Contacts
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Rated current } \\
\cline { 2 - 3 } & \multicolumn{4}{|l|}{ G9EC-1(-B) } \\
\hline Rated load & 200 A at 400 VDC \\
\hline Rated carry current & 200 A \\
\hline Maximum switching voltage & 400 V \\
\hline Maximum switching current & 200 A \\
\hline
\end{tabular}
- Characteristics
\begin{tabular}{|c|c|c|}
\hline & Item & G9EC-1(-B) \\
\hline \multicolumn{2}{|l|}{Contact resistance (see note 2)} & \(30 \mathrm{~m} \Omega\) max. ( \(0.2 \mathrm{~m} \Omega\) typical) \\
\hline \multicolumn{2}{|l|}{Contact voltage drop} & 0.1 V max. (for a carry current of 200 A ) \\
\hline \multicolumn{2}{|l|}{Operate time} & 50 ms max. \\
\hline \multicolumn{2}{|l|}{Release time} & 30 ms max. \\
\hline \multirow[t]{2}{*}{Insulation resistance (see note 3.)} & Between coil \& contacts & 1,000 M \(\Omega\) min. \\
\hline & Between contacts of the same polarity & 1,000 M \(\Omega\) min. \\
\hline \multirow[t]{2}{*}{Dielectric strength} & Between coil \& contacts & \(2,500 \mathrm{VAC}, 1 \mathrm{~min}\) \\
\hline & Between contacts of the same polarity & \(2,500 \mathrm{VAC}, 1 \mathrm{~min}\) \\
\hline \multicolumn{2}{|l|}{Impulse withstand voltage (See note 4.)} & 4,500 V \\
\hline \multirow[t]{2}{*}{Vibration resistance} & Destruction & 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude (Acceleration: 2.94 to \(88.9 \mathrm{~m} / \mathrm{s}^{2}\) ) \\
\hline & Malfunction & 10 to 55 to \(10 \mathrm{~Hz}, 0.75-\mathrm{mm}\) single amplitude (Acceleration: 2.94 to \(88.9 \mathrm{~m} / \mathrm{s}^{2}\) ) \\
\hline \multirow[t]{2}{*}{Shock resistance} & Destruction & \(490 \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline & Malfunction & \(196 \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline \multicolumn{2}{|l|}{Mechanical endurance (See note 5.)} & 200,000 ops. min. \\
\hline \multicolumn{2}{|l|}{Electrical endurance (resistive load) (See note 6.)} & \(400 \mathrm{VDC} 200 \mathrm{~A}, 3,\),000 ops. min. \\
\hline \multicolumn{2}{|l|}{Short-time carry current} & 300 A (15 min) \\
\hline \multicolumn{2}{|l|}{Maximum interruption current} & 1.000 A at 400 VDC (10 times) \\
\hline \multicolumn{2}{|l|}{Overload interruption} & 700 A at 400 VDC ( 40 times min.) \\
\hline \multicolumn{2}{|l|}{Reverse polarity interruption} & -200 A at 200 VDC ( 1,000 times min.) \\
\hline \multicolumn{2}{|l|}{Ambient operating temperature} & -40 to \(50^{\circ} \mathrm{C}\) (with no icing or condensation) \\
\hline \multicolumn{2}{|l|}{Ambient operating humidity} & 5\% to 85\% \\
\hline \multicolumn{2}{|l|}{Weight Approx.} & 570 g \\
\hline
\end{tabular}

Note: 1. The above values are initial values at an ambient temperature of \(23^{\circ} \mathrm{C}\) unless otherwise specified.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method
3. The insulation resistance was measured with a 500 VDC megohmmeter.
4. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ( \(1.2 \times 50\) нs)
6. The electrical endurance was measured at a switching frequency of 60 operations/hr.
- G9EC-1 Switching / Current Conduction Models


Carry Current vs Energizing Time


Electrical Endurance (Switching Performance)


Must-operate Voltage and Must-release Voltage Distributions


Electrical Endurance (Interruption Performance)


Time Characteristic Distributions


■ G9EC-1 Switching / Current Conduction Models


Dimensions
Note: All units are in millimeters unless otherwise indicated

\section*{Models with Screw Threads}

G9EC-1-B


\section*{Models with Lead Wires}

G9EC-1


Options

\section*{Terminal Cover}

P9EC-C

*Dimensions ol cutout tor wiring
```


[^0]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^1]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

