

Components Catalogue

Contents

OMRON

Welcome	7 - 8
POWER RELAYS	9 - 156
Technical Information – Power & Signal Relays	9 - 28
Selection Guide	29 - 40
G5B	41 - 44
G5NB-E	45 - 48
G5SB	49 - 52
G6M	53 - 56
G6D	57 - 60
G6B	61 - 67
G2RG	68 - 71
G5Q-EU	72 - 75
G6RN	76 - 79
G5LE	80 - 84
G5LC-EU	85 - 88
G5C(E)	89 - 92
G6C	93 -101
<u>G2R</u>	102 - 122
G2RL	123 - 127
G4W	128 - 132
G8P	133 - 138
G4A	139 - 142
G9EA-1	143 - 149
G9EC-1	150 - 156

SIGNAL RELAYS	157 -273
Selection Guide	157 - 165
G5V-1	166 - 168
G2E	169 - 172
G6E	173 - 177
G6L	178 - 186
G6H	187 - 192
G6J	193 - 202
G6K	203 - 212
G6S	213 - 221
G5A	222 - 225
G5V-2	226 - 230
G6A	231 - 239
G6Y	240 - 245
G6K(U)-RF	246 - 249
G6Z	250 - 265
G6W	266 - 273

Contents

AUTOMOTIVE RELAYS	274 - 313
Selection Guide	274 - 277
G8N-1	278 - 282
G8ND-2	283 - 287
G8NW	288 - 292
G8QN	293 - 294
G8SN	295 - 296
G8SE	297 - 298
G8HN-J	299 - 304
G8HL	305 - 309
G8JN	310 - 311
G8JR	312 - 313

SOLID STATE RELAYS	314 - 347
Technical Information	314 - 318
Selection Guide	319 - 323
G3R/G3RD	324 - 327
G3M	328 - 331
G3MB	332 - 334
G3MC	335 - 339
G3S/G3SD	340 - 343
G3DZ	344 - 347

348 - 433
348 - 351
352 - 357
358 - 359
360 - 361
362 - 363
364 - 365
366 - 367
368 - 369
370 - 371
372 - 373
374 - 375
376 - 377
378 - 379
380 - 381
382 - 384
385 - 386

OMRON

Contents

G3VM-3(F)L

G3VM-353B/E

G3VM-401B/E

G3VM-401BY/EY

G3VM-601BY/EY

G3VM-4N(F)

G3VM-61H1 G3VM-201H1

G3VM-351H

G3VM-353H G3VM-401H

G3VM-62C1/F1 G3VM-352C/F

G3VM-W(F)L

G3VM-354C/F

G3VM-355C/F

G3VM-402C/F

G3VM-62J1

G3VM-202J1

G3VM-352J

G3VM-354J

G3VM-355J

G3VM-402J

OMRON

387 - 388

389 - 390

391 - 392

393 - 395

396 - 397

398 - 399 400 - 401

402 - 403

404 - 405 406 - 407

408 - 409 410 - 411

412 - 413

414 - 415

416 - 417

418 - 419

420 - 421

422 - 423

424 - 425

426 - 427

428 - 429

430 - 431

432 - 433

Contents

OMROF

SS-P	576 - 581
SSG	582 - 589
D2F	590 - 595
D2MQ	596 - 600
D3C	601 - 604
D2X	605 - 608
D3K	609 - 612
D3M	613 - 618
D2SW	619 - 624
D2VW	625 - 630
D2JW	631 - 635
D2HW	636 - 644
D2MC	645 - 649
D2D	650 - 657
D3D	658 - 661

DIP SWITCHES	662 - 690
Technical Information	662 - 664
Selection Guide	665 - 668
A6H	669 - 670
A6T/A6S	671 - 673
A6D/A6DR	674 - 676
A6E/A6ER	677 - 679
A6A	680 - 683
A6C/A6CV	684 - 686
A6R/A6RV	687 - 690

TACTILE SWITCHES	691 - 731
Techinical Information	691 - 693
Selection Guide	694 - 698
B3F	699 - 707
B3W	708 - 711
B3FS	712 - 714
B3SN	715 - 716
B3S	717 - 718
B3WN	719 - 720
B3J	721 - 723
B3DA	724 - 725
B3D	726 - 729
B32	730 - 731

		The second	
1	ł		
	2	Pr.	
$\langle \rangle$	1/h	0	

GENERAL PURPOSE RELAYS	434 - 508
Technical Information	434 - 439
Selection Guide	440 - 442
MY	443 - 455
LY	456 - 468
G2RS	469 - 478
G7L	479 - 493
G7J	494 - 502
G7SA	503 - 508

MICROSWITCHES	509 - 659
Technical Information	509 - 520
Selection Guide	521 - 530
D3V	531 - 544
V	545 - 560
VX	561 - 567
SS	568 - 575

	ACC/ACCV
	A6R/A6RV
	TACTILE SWITCHES
1	Techinical Information
	Selection Guide
	B3F
	B3W/

Contents

Contents	

OMRON

862 - 864 865 - 867 868 - 870 871 - 873
865 - 867 868 - 870 871 - 873
868 - 870 871 - 873
871 - 873
07/ 076
0/4 - 0/0
877 - 881
882 - 884
885 - 887
888 - 890
891 - 894
895 - 897
898 - 900
901 - 904
905 - 908
909 - 911
010 011

LEDs	915 - 921
2MDR	915 - 921

922 - 935
922 - 923
924 - 926
927 - 928
929 - 930
931 - 933
934 - 935

CONNECTORS	936 - 968
XF2E	936 - 937
XF2H	938 - 939
XF2J	940 - 941
XF2L	942 - 943
XG4M-U	944 - 946
XG4	947 - 954
XM4	955 - 957
XH2	958 - 964
XM7	965 - 968

969 - 971

PHOTOMICROSENSORS	732 - 914
Technical Information	732 - 736
Selection Guide	737 - 738
EE-SX1107	739 - 743
EE-SX1018	744 - 746
EE-SX1108	747 - 751
EE-SX1131	752 - 756
EE-SX1139	757 - 759
EE-SX4139	760 - 762
EE-SX493	763 - 765
EE-SX1055	766 - 768
EE-SX1046	769 - 771
EE-SX1082	772 - 774
EE-SX1106	775 - 777
EE-SX1109	778 - 782
EE-SX199	783 - 785
EE-SX398/498	786 - 788
EE-SV3	789 - 791
EE-SX1071	792 - 794
EE-SX1088	795 - 797
EE-SH3	798 - 800
EE-SJ3	801 - 803
EE-SX3088/4088	804 - 806
EE-SG3	807 - 809
EE-SX1128	810 - 812
EE-SX1041	813 - 815
EE-SX1042	816 - 818
EE-SX1081	819 - 821
EE-SX1235A-P2	822 - 824
EE-SX4009-P1	825 - 827
EE-SX4019-P2	828 - 830
EE-SX3081/4081	831 - 833
EE-SX4009-P10	834 - 836
EE-SX4235A-P2	837 - 839
EE-SX1070	840 - 842
EE-SX3070/4070	843 - 845
EE-SPX415-P2	846 - 848
EE-SX461-P11	849 - 852
EE-SX414-P1	853 - 855
EE-SA102	856 - 858
EE-SA103	859 - 861

PART NUMBER INDEX

Welcome to the Omron Components Catalogue

Omron Components is a world-class business delivering a wide range of high quality, high performance components utilising latest technologies and backed by full technical, applications and logistical support.

We offer the widest range of relays for power, signal and automotive applications as well as solid-state and MOSFET relays. Our G3VM MOSFETS combine

the advantages of mechanical and solid-state technologies allowing design flexibility with either AC or DC load able to be connected in either direction. We are also developing our range of microsensors, and currently offer photomicrosensors and a new range of D8M-D8 micro pressure-sensors which meet stringent safety standards such as working reliably with low pressure, metal casing and flange fitting. Our broad range of switches includes micro, DIP, and tactile options, and you will find a wide selection of connectors to meet

industry-standard data interconnect, power transmission and signalling. Omron Double Reflection LEDs feature built-in optical light guide technology that more than doubles effective light output compared with conventional bullet-type LEDs. Environmental research and experience enabled us to formulate a policy to remove recognised hazardous substances from our products well within the timescales of European Directives. We have identified suitable alternative materials and agreed the changes we need to make to our production processes in order to maintain quality levels. All of our manufacturing sites have achieved ISO14001 certification for the management of environmental protection in our organisation.

Using our website alongside this catalogue, you can be kept fully up-to-date with our range of products, technical capabilities and environmental policy.

www.eu.omron.com/ocb

Omron Electronic Components Europe B.V. reserves the right to make any changes to the specifications, technical information and data of the components described in this catalogue at its sole discretion without prior notice Although we do strive for perfection, Omron Electronic Components Europe B.V. does not warrant or make any representations regarding the correctness or accuracy of the specifications, technical information and data of the components as described in this catalogue.

OMRON

3.8+0

Dimensions -

Note: All units are in millimeters unless otherwise indicated. Unless otherwise specified, a tolerance of ±0.4 mm applies to all dimensions.

B32-12 0

B32-10 0

B32-16 0

Technical Information – Photomicrosensors

OMRO

Technical Information –

The Photomicrosensor is a compact optical sensor that senses objects or object positions with an optical beam. The transmissive Photomicrosensor and reflective Photomicrosensor are typical Photomicrosensors.

The transmissive Photomicrosensor incorporates an emitter and a transmissive that face each other as shown in Figure 1. When an object is located in the sensing position between the emitter and the detector, the object intercepts the optical beam of the emitter, thus reducing the amount of optical energy reaching the detector.

The reflective Photomicrosensor incorporates an emitter and a detector as shown in Figure 2. When an object is located in the sensing area of the reflective Photomicrosensor, the object reflects the optical beam of the emitter, thus changing the amount of optical energy reaching the detector.

"Photomicrosensor" is an OMRON product name. Generally, the Photomicrosensor is called a photointerrupter.

Figure 1. Transmissive Photomicrosensor

Figure 2. Reflective Photomicrosensor

DataSheet

Absolute Maximum Ratings and Electrical and Optical Characteristics

The datasheets of Photomicrosensors include the absolute maximum ratings and electrical and optical characteristics of the Photomicrosensors as well as the datasheets of transistors and ICs. It is necessary to understand the difference between the absolutemaximum ratings and electrical and optical characteristics of various Photomicrosensors.

Absolute Maximum Ratings

The absolute maximum ratings of Photomicrosensors and other products with semiconductors specify the permissible operating voltage, current, temperature, and power limits of these products.

The products must be operated absolutely within these limits.

Therefore, when using any Photomicrosensor, do not ignore the absolute maximum ratings of the Photomicrosensor, otherwise the Photomicrosensor will not operate precisely. Furthermore, the Photomicrosensor may be deteriorate or become damaged, in which case OMRON will not be responsible.

Practically, Photomicrosensors should be used so that there will be some margin between their absolute maximum ratings and actual operating conditions.

Electrical and Optical Characteristics

The electrical and optical characteristics of Photomicrosensors indicate the performance of Photomicrosensors under certain conditions.

Most items of the electrical and optical characteristics are indicated by maximum or minimum values. OMRON usually sells Photomicrosensors with standard electrical and optical characteristics.

The electrical and optical characteristics of Photomicrosensors sold to customers may be changed upon request. All electrical and optical characteristic items of Photomicrosensors indicated by maximum or minimum values are checked and those of the Photomicrosensors indicated by typical values are regularly checked before shipping so that OMRON can guarantee the performance of the Photomicrosensors.

In short, the absolute maximum ratings indicate the permissible operating limits of the Photomicrosensors and the electrical and optical characteristics indicate the maximum performance of the Photomicrosensors.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Terminology -

The terms used in the datasheet of each Photomicrosensor with a phototransistor output circuit or a photo IC output circuit are explained below.

OMRON

Phototransistor Output Photomicrosensor

Symbol	Item	Definition
I _{FP}	Pulse forward current	The maximum pulse current that is allowed to flow continuously from the anode to cathode of an LED under a specified temperature, a repetition period, and a pulse width condition.
Ic	Collector current	The current that flows to the collector junction of a phototransistor.
Pc	Collector dissipation	The maximum power that is consumed by the collector junction of a phototransistor.
ID	Dark current	The current leakage of the phototransistor when a specified bias voltage is imposed on the phototransistor so that the polarity of the collector is positive and that of the emitter is negative on condition that the illumination of the Photomicrosensor is 0(x .
IL.	Light current	The collector current of a phototransistor under a specified input current condition and at a specified bias voltage.
V _{CE} (sat)	Collector-emitter saturated voltage	The ON-state voltage between the collector and emitter of a phototransistor under a specified bias current condition.
I _{LEAK}	Leakage current	The collector current of a phototransistor under a specified input current condition and at a specified bias voltage when the phototransistor is not exposed to light.
tr	Rising time	The time required for the leading edge of an output waveform of a phototransistor to rise from 10% to 90% of its final value when a specified input current and bias condition is given to the phototransistor.
tf	Falling time	The time required for the trailing edge of an output waveform of a phototransistor to decrease from 90% to 10% of its final value when a specified input current and bias condition is given to the phototransistor.
V _{CEO}	Collector-emitter voltage	The maximum positive voltage that can be applied to the collector of a phototransistor with the emitter at reference potential.
V _{ECO}	Emitter-collector voltage	The maximum positive voltage that can be applied to the emitter of a phototransistor with the collector at reference potential.

Phototransistor/Photo IC Output Photomicrosensor

Symbol	Item	Definition	
IF	Forward current	The maximum DC voltage that is allowed to flow continuously from the anode of the LED to the cathode of the LED under a specified temperature condition.	
V _R	Reverse voltage	The maximum negative voltage that can be applied to the anode of the LED with the cathode at reference potential.	
V _{cc}	Supply voltage	The maximum positive voltage that can be applied to the voltage terminals of the photo IC with the ground terminal at reference potential.	
V _{OUT}	Output voltage	The maximum positive voltage that can be applied to the output terminal with the ground terminal of the photo IC at reference potential.	
I _{OUT}	Output current	The maximum current that is allowed to flow in the collector junction of the output transistor of the photo IC.	
Pout	Output permissible dissipation	The maximum power that is consumed by the collector junction of the output transistor of the photo IC.	
V _F	Forward voltage	The voltage drop across the LED in the forward direction when a specified bias current is applied to the photo IC.	
I _R	Reverse current	The reverse leakage current across the LED when a specified negative bias is applied to the anode with the cathode at reference potential.	
V _{oL}	Output low voltage	The voltage drop in the output of the photo IC when the IC output is turned ON under a specified voltage and output current applied to the photo IC.	
V _{OH}	Output high voltage	The voltage output by the photo IC when the IC output is turned OFF under a specified supply voltage and bias condition given to the photo IC.	
I _{cc}	Current consumption	The current that will flow into the sensor when a specified positive bias voltage is applied from the power source with the ground of the photo IC at reference potential.	
I _{FT} (I _{FT OFF})	LED current when output is turned OFF	The forward LED current value that turns OFF the output of the photo IC when the forward current to the LED is increased under a specified voltage applied to the photo IC.	
I _{FT} (I _{FT ON})	LED current when output is turned ON	The forward LED current value that turns ON the output of the photo IC when the forward current to the LED is increased under a specified voltage applied to the photo IC.	
∆н	Hysteresis	The difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC is turned ON and when the photo IC is turned OFF.	
f	Response frequency	The number of revolutions of a disk with a specified shape rotating in the light path, expressed by the number of pulse strings during which the output logic of the photo IC can be obtained under a specified bias condition given to the LED and photo IC (the number of pulse strings to which the photo IC can respond in a second).	

Precautions

Correct Use

Use the product within the rated voltage range.

Applying voltages beyond the rated voltage ranges may result in damage or malfunction to the product.

Wire the product correctly and be careful with the power supply polarities.

Incorrect wiring may result in damage or malfunction to the product.

Connect the loads to the power supply. Do not short-circuit the loads.

Short-circuiting the loads may result in damage or malfunction to the product.

Structure and Materials

The emitter and detector elements of conventional Photomicrosensors are fixed with transparent epoxy resin and the main bodies are made of polycarbonate. Unlike ICs and transistors, which are covered with black epoxy resin, Photomicrosensors are subject to the following restrictions.

1. Low Heat Resistivity

The storage temperature of standard ICs and transistors is approximately 150°C. On the other hand, the storage temperature of highly resistant Photomicrosensors is 100° C maximum.

2. Low Mechanical Strength

Black epoxy resin, which is used for the main bodies of ICs and transistors, contains additive agents including glass fibre to increase the heat resistivity and mechanical strength of the main bodies. Materials with additive agents cannot be used for the bodies of Photomicrosensors because Photomicrosensors must maintain good optical permeability. Unlike ICs and transistors, Photomicrosensors must be handled with utmost care because Photomicrosensors are not as heat or mechanically resistant as ICs and transistors. No excessive force must be imposed on the lead wires of Photomicrosensors.

Mounting

Screw Mounting

If Photomicrosensors have screw mounting holes, the Photomicrosensors can be mounted with screws. Unless otherwise specified, refer to the following when tightening the screws.

Hole diameter	Screw size	Tightening torque
1.5 dia.	M1.4	0.20 N • m
2.1 dia.	M2	0.34 N • m
3.2 dia.	M3	0.54 N • m
4.2 dia.	M4	0.54 N • m

Read the following before tightening the screws.

 The use of a torque screwdriver is recommended to tighten each of the screws so that the screws can be tightened to the tightening torque required.

OMRON

- 2. The use of a screw with a spring washer and flat washer for the mounting holes of a Photomicrosensor is recommended. If a screw with a spring washer but without a flat washer is used for any mounting hole, the part around the mounting hole may crack.
- Do not mount Photomicrosensors to plates stained with machining oil, otherwise the machining oil may cause cracks on the Photomicrosensors.
- 4. Do not impose excessive forces on Photomicrosensors mounted to PCBs. Make sure that no continuous or instantaneous external force exceeding 500 g (4.9 N) is imposed on any lead wire of the Photomicrosensors.

PCB Mounting Holes

Unless otherwise specified, the PCB to which a Photomicrosensor is mounted must have the following mounting holes

Soldering

Lead Wires

Make sure to solder the lead wires of Photomicrosensors so that no excessive force will be imposed on the lead wires. If an excessive forces is likely to be imposed on the lead wires, hold the bases of the lead wires.

Soldering Temperature

1. Manual Soldering

Unless otherwise specified, the lead wires of Photomicrosensors can be soldered manually under the following conditions.

Soldering temperature:	350°C max. (The temperature of the tip of a 30-W soldering iron is approximately 320°C when the soldering iron is heated up.)
Soldering time:	3 s max.
Soldering position:	At least 1.5 mm away from the bases of the lead wires

The temperature of the tip of any soldering iron depends on the shape of the tip. Check the temperature with a thermometer before soldering the lead wires. A highly resistive soldering iron incorporating a ceramic heater is recommended for soldering the lead wires.

2. Dip Soldering

The lead wires of Photomicrosensors can be dip-soldered under the following conditions unless otherwise specified. Preheating temperature: Must not exceed the storage

temperature. Must not exceed the stora

Soldering	temperature:	260°C.

Soldering time: 10 s max.

Soldering position: At least 1.5 mm away from the bases of the lead wires.

Do not use non-washable flux when soldering EE-SA-series Photomicrosensors, otherwise the Photomicrosensors will have operational problems.

3. Reflow Soldering

The reflow soldering of Photomicrosensors is not possible except for the EE-SX1102. The reflow soldering of the EE-SX1102 must be performed carefully under the conditions specified in the datasheet of the EE-SX1102. Before performing the reflow soldering of the EE-SX1102, make sure that the reflow soldering equipment satisfies the conditions.

External Forces

The heat resistivity and mechanical strength of Photomicrosensors are lower than those of ICs or transistors. Do not to impose external force on Photomicrosensors immediately after the Photomicrosensors are soldered. Especially, do not impose external force on Photomicrosensors immediately after the Photomicrosensors are dipsoldered.

Cleaning Precautions

Cleaning

Photomicrosensors except the EE-SA105 can be cleaned subject to the following restrictions.

1. Types of Detergent

Polycarbonate is used for the bodies of most Photomicrosensors. Some types of detergent dissolve or crack polycarbonate. Before cleaning Photomicrosensors, refer to the following results of experiments, which indicate what types of detergent are suitable for cleaning Photomicrosensors other than the EE-SA105.

Observe the law and prevent against any environmental damage when using any detergent.

Results of Experiments

Ethyl alcohol:	OK
Methyl alcohol:	OK
Isopropyl alcohol:	OK
Chlorofluorocarbon:	Depends on the additive agents (see note)
Trichlene:	NG
Acetone:	NG
Methylbenzene:	NG
Water (hot water):	The lead wires corrode depending on the conditions

Note: Chlorofluorocarbon containing ethyl alcohol or methyl alcohol as an additive agent can be used to clean Photomicrosensors except the EE-SA105. Chlorofluorocarbon containing acetone as an additive agent must not be used to clean any Photomicrosensor. For reasons of environmental protection, refrain from using any detergent containing chlorofluorocarbon.

2. Cleaning Method

Unless otherwise specified, Photomicrosensors other than the EE-SA105 can be cleaned under the following conditions. Do not apply an unclean detergent to the Photomicrosensors. DIP cleaning: OK

Ultrasonic cleaning:

Brushina:

Depends on the equipment and the PCB size. Before cleaning Photomicrosensors, conduct a cleaning test with a single Photomicrosensor and make sure that the Photomicrosensor has no broken lead wires after the Photomicrosensor is cleaned.

The marks on Photomicrosensors may be brushed off. The emitters and detectors of reflective Photomicrosensors may have scratches and deteriorate when they are brushed. Before brushing Photomicrosensors, conduct a brushing test with a single Photomicrosensor and make sure that the Photomicrosensor is not damaged after it is brushed.

15

Selection Guide – Photomicrosensors

OMRON

Sensing Method	Sensing Distance	Model	Output Configuration	Features	Page No.
Transmissive	1 mm	EE-SX1107	Phototransistor	Ultra-compact, surface mounting	737
	2 mm	EE-SX1018	Phototransistor	Compact, general purpose	742
		EE-SX1108	Phototransistor	Ultra-compact, surface mounting	745
		EE-SX1131	Phototransistor	Ultra-compact, surface mounting, dual channel output	750
		EE-SX1139	Phototransistor	Ultra-compact, general purpose	755
		EE-SX4139	Photo-IC	Ultra-compact with low operating voltage	758
		EE-SX493	Photo-IC	With a horizontal aperture	761
	2.8 mm	EE-SX1055	Phototransistor	Compact, cost effective	764
	3 mm	EE-SX1046	Phototransistor	With a horizontal aperture	767
		EE-SX1082	Phototransistor	With a horizontal aperture	770
		EE-SX1106	Phototransistor	Ultra-compact, general purpose	773
		EE-SX1109	Phototransistor	Ultra-compact, surface mounting	776
		EE-SX199	Phototransistor	With a positioning boss	781
		EE-SX398/ 498	Phototransistor/ Photo-IC	General purpose	784
	3.4 mm	EE-SV3	Phototransistor	With mounting tab	787
		EE-SX1071	Phototransistor	General purpose	790
		EE-SX1088	Phototransistor	Screw mounting	793
		SH3	Phototransistor	Screw mounting	796
		EE-SJ3	Phototransistor	Various aperture types available	799
		EE-SX3088/4088	Photo-IC	Screw mounting	802
	3.6 mm	EE-SG3	Phototransistor	With dust-proof aperture and mounting tab	805
	4.2 mm	EE-SX1128	Phototransistor	With a horizontal aperture	808
	5 mm	EE-SX1041	Phototransistor	General purpose	811
		EE-SX1042	Phototransistor	High profile	814
		EE-SX1081	Phototransistor	General purpose	817
		EE-SX1235A-P2	Phototransistor	Snap-in mounting	820
		EE-SX4009-P1	Photo-IC	Screw mounting	823
		EE-SX4019-P2	Photo-IC	Screw mounting	826
		EE-SX3081/4081	Photo-IC	General purpose q	829
		EE-SX4009-P10	Photo-IC	Screw mounting	832
		EE-SX4235A-P2	Photo-IC	Snap-in mounting	835
	8 mm	EE-SX1070	Phototransistor	General purpose	838
		EE-SX3070/4070	Photo-IC	General purpose	841
	12 mm	EE-SPX415-P2	Photo-IC	Light modulation built-in amplifier IC	844
	15 mm	EE-SX461-P11	Photo-IC	Easy mountable	847
	17 mm	EE-SPX414-P1	Photo-IC	Light modulation built-in amplifier IC	851

Selection Guide – Photomicrosensors

OMRON

Sensing Method	Sensing Distance	Model	Output Configuration	Features	Page No.
Actuator	-	EE-SA102	Phototransistor	General purpose	854
		EE-SA103	Phototransistor	Compact	857
		EE-SA104	Phototransistor	Compact	860
		EE-SA107-P2	Phototransistor	Snap-in mounting with connector	863
		EE-SA407-P2	Photo-IC	Snap-in mounting with connector	866
Reflective mounting	1 mm	EE-SY124	Phototransistor	Ultra-compact, general purpose/ surface mounting	869
		EE-SY125	Phototransistor	Ultra-compact, general purpose/ surface mounting	872
		EE-SY193	Phototransistor	Ultra-compact, surface mounting	875
	3.5 mm	EE-SY171	Phototransistor	Thin	880
	4 mm	EE-SY169B	Phototransistor	High resolution red LED/ infra-red LED	883
	4.4 mm	EE-SY113	Phototransistor	Dust-proof	886
		EE-SY313/ 413	Photo-IC	Dust-proof	889
	5 mm	EE-SF5-B	Phototransistor	General purpose or screw mounting	893
		EE-SY110	Phototransistor	General purpose	896
		EE-SY310/ 410	Photo-IC	General purpose	899
Micro displacement	5.5 - 11.5 mm	Z4D-B01	Analog votage output	Easy control and ultra high resolution	903
Multi-beam	50 - 125mm	EY3A-312	Photo-IC	3 beam high sensitivity and resisitivity to light interference	907
	125 mm	EY3A-112	Photo-IC	1 beam high sensitivity and resisitivity to light interference	

Dimensions

Note: All units are in millimeters unless stated.

(0.5)

Optical axis

Name

(0.5)

Cross section AA

Internal Circuit

Anode Cathode

Collector Emitter

Terminal No.

С

Recommended	Soldering
Pattern	

			1.2
			2
1.8	1.8	1.8	

			2.0
	į		°,
1.8	1.8	1.8	

Unless otherwise stated the tolerances are ±0.15mm.

Features

- Ultra-compact with a 3.4-mm-wide sensor and a 1-mm-wide slot.
- PCB surface mounting type.
- High resolution with a 0.15-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	25 mA (see note 1)
	Pulse foward current	I _{FP}	100 mA (see note 2)
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	20 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	75 mW (see note 1)
Ambient temperature	Operating	Topr	-30°C to 85°C
	Storage	Tstg	-40°C to 90°C
	Reflow soldering	Tsol	240°C (see note 3)
	Manual soldering	Tsol	300°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Duty: 1/100; Pulse width: 0.1 ms.

3. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.1 V typ., 1.3 V max.	I _F = 5 mA
	Reverse current	I _R	10 µA max.	$V_R = 5 V$
	Peak emission wavelength	λ _P	940 m typ.	I _F = 20 mA
Detector	Light current	l,	50 μA min., 150 μA typ., 500 μA max.	$I_F=5\ \text{mA},\ V_{CE}=5\ \text{V}$
	Dark current	ID	100 nA max.	$V_{CE}=10 \text{ V}, 0 \ell_X$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20~mA,~I_L=50~\mu A$
	Peak spectral sensitivity wavelength	λ _P	900 nm typ.	-
Rising time		tr	10 µs typ.	$V_{CC}=5~V,~R_L=1~k\Omega,~I_L=100~\mu A$
Falling time		tf	10 μs typ.	V_{CC} = 5 V, R_L = 1 kΩ, I_L = 100 μA

OMRON

Engineering Data

0.4 0.6 0.8

1.2 1.4 1.6 1.6

Characteristics (Typical)

Light Current vs. Forward Current

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Response Time Measurement Circuit

Dark

Ambient temperature Ta (°C)

Sensing Position Characteristics (Typical)

Photomicrosensor-Transmissive - EE-SX1107

Tape and Reel

Unit: mm (inch).

Reel

Tape

Tape configuration

Tape quantity

2,500 pcs./reel

1 L (%)

current

light

Ve

1 L (%)

t

S

Relative light

-0.6

Sensing Position Characteristics (Typical)

Distance d (mm)

40 60 80

Ir=5mA Vcz=5V

1ªr

OMRON

Precautions

Soldering Information

Reflow soldering

- The following soldering paste is recommended:
 - Melting temperature: 178 to 192°C Composition: Sn 63%, Pb 37%
- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25W, and keep the temperature of the iron tip at 300°C or below.
- · Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 10 to 30°C

Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30° C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Photomicrosensor-Transmissive – EE-SX1018

Features

- Compact model with a 2-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

OMRO

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is10µs maximum with a frequency of 100Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 mA min., 14 mA max.	I_F = 20 mA, V_{CE} = 10 V
	Dark current	ID	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20\ mA,\ I_L=0.1\ mA$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CF} = 10 V$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 µs typ.	$V_{CC}=5~V,~R_L=100~\Omega,~I_L=5~mA$

Dimensions

Note: All units are in millimeters unless stated.

Internal Circuit

Terminal No.	Name
A Contraction of the second se	Anode
<	Cathode
)	Collecter
	Emitter

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
δ < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Engineering Data

Forward Current vs. Collector **Dissipation Temperature Rating** Forward Current vs. Forward Voltage Characteristics (Typical)

Light Current vs. Forward Current Characteristics (Typical)

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Load resistance R_L (kΩ)

ŝ

E Ħ

Ę,

ime

e P

ent Temperature Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical) (Typical)

(%)

1

ent

cun

tive light (

Relat

Ambient temperature Ta (°C)

Sensing Position Characteristics

-0.5 -0.25 0

100

Circuit

0.25 0.5 0.75

Distance d (mm)

I_F = 20 mA V_{CE} = 10 V Ta = 25°C

(Center of optical axis) ---0-+

OMRON

Dimensions

Note: All units are in millimeters otherwise indicated

Ø

Recommended			
Soldering Pattern			

	1.6
	10
2	3 2

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Features

- Ultra Compact model with a 2mm slot.
- PCB surface mounting type.
- High resolution with a 0.3-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	25 mA (see note 1)
	Pulse foward current	I _{FP}	100 mA (see note 2)
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	20 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	75 mW (see note 1)
Ambient temperature	Operating	Topr	-30°C to 85°C
	Storage	Tstg	-40°C to 90°C
	Reflow Soldering	Tsol	240°C (see note 3)
	Manual Soldering	Tsol	300°C (see note 3

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Duty: 1/100; Pulse width: 0.1 ms

3. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.1 V typ., 1.3 V max.	I _F = 5 mA
	Reverse current	I _R	10 µA max.	V _R = 5 V
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	۱ _L	50 μA min., 150 μA typ., 500 μA max.	$I_F = 5$ mA, $V_{CE} = 5$ V
	Dark current	ID	100 nA max.	$V_{CE} = 10$ V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20 \text{ mA}, I_L=50 \mu\text{A}$
Peak spectral sensitivity		λ_{P}	900 nm typ.	-
Rising time		tr	10 μs typ.	V_{CC} = 5 V, R_L = 1K $\Omega,~I_L$ = 100 μA
Falling time		tf	10 μs typ.	V_{CC} = 5 V, R_L = 1K $\Omega,~I_L$ = 100 μA

Unless otherwise specified, the tolerances are ± 0.15 mm.

Ta=250

Engineering Data

P 12 14 16 18 04 06 0.8

Forward voltage VF (V)

Ambient temperature Ta (°C) Light Current vs. Collector-Emitter Relative Light Current vs. Ambient Voltage Characteristics (Typical)

Collector-Emitter voltage VCF (V) Ambient temperature Ta (°C)

(Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics

0.2 0.4 0.6

ative Rel -0.2

Distance d (mm)

Response Time Measurement Circuit

IF=5mA

Light Current vs. Forward Current

Characteristics (Typical)

Forward current I_F (mA)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Sensing Position Characteristics (Typical)

Distance d (mm)

Photomicrosensor-Transmissive - EE-SX1108

Tape and Reel

Unit: mm (inch).

Reel

Tape

Tape configuration

Tape quantity 2,000 pcs./reel

Forward Current vs. Forward Voltage Characteristics (Typical)

OMRON

Precautions -

Soldering Information

Reflow soldering

- The following soldering paste is recommended:
 - Melting temperature: 178 to 192°C Composition: Sn 63%, Pb 37%
- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25W, and keep the temperature of the iron tip at 300°C or below.
- · Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 10 to 30°C

Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

Features

- Ultra-compact with a 5mm wide sensor and a 2mm wide slot.
- PCB surface mounting type.
- High resolution with a 0.3-mm-wide aperture.
- Dual channel output.

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	25 mA (see note 1)
	Pulse foward current	I _{FP}	100 mA (see note 2)
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	20 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	I _C	20 mA
	Collector dissipation	Pc	75 mW (see note 1)
Ambient temperature	Operating	Topr	-30°C to 85°C
	Storage	Tstg	-40°C to 90°C
	Reflow soldering	Tsol	240°C (see note 3)
	Manual soldering	Tsol	300°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Duty: 1/100; Pulse width: 0.1 ms.

3. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.1 V typ., 1.3 V max.	$I_F = 5 \text{ mA}$
	Reverse current	I _R	10 µA max.	V _R = 5 V
	Peak emission wavelength	λρ	940 nm typ.	I _F = 20 mA
Detector	Light current	I _{L1} /I _{L2}	50 μA min., 150 μA typ., 500 μA max.	$I_F = 5$ mA, VCE = 5 V
	Dark current	I _D	100 nA max.	V _{CE} = 10 V, 0 ℓ x
	Leakage current	I _{LEAK}	-	-
	Collector Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_{F} = 20 \text{ mA}, I_{L} = 50 \mu\text{A}$
	Peak spectral sensitivity wavelength	λ _P	900 nm typ.	-
Rising time		tr	10 µs typ.	$\label{eq:V_CC} \begin{array}{l} V_{CC}=5 \ V, \ R_L=1 \ k\Omega, \\ I_L=100 \ \mu A \end{array}$
Falling time		tf	10 μs typ.	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 5 \ V, \ R_L = 1 \ k\Omega, \\ I_L = 100 \ \mu A \end{array}$

Note: All units are in millimeters unless otherwise indicated.

Recommended Soldering Pattern

۰.

-

0.4

2

Unless otherwise specified the tolerances are ±0.15mm.

Internal Circuit

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E1	Emitter 1
E2	Emitter 2

Forward Current vs. Collector **Dissipation Temperature Rating**

IL(mA)

ent

cun

Light

Forward Current vs. Forward

416 31 Forward current IF (mA)

Forward voltage V_F (V)

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

k=5mA

Dark Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Response Time vs. Load Resistance Sensing Position Characteristics (Typical)

IL (%)

t

8

light

Re

Characteristics (Typical)

Load resistance R_L (kΩ)

 $\Rightarrow = k$

R

Outpu

101 0.2 -0.4-0.20 0.4

Distance d (mm)

1-=5mA

Ambient temperature Ta (°C) **Sensing Position Characteristics**

Light Current vs. Forward Current Characteristics (Typical)

OMRON

(An) di

Tape and Reel

Unit: mm (inch).

Tape configuration

Tape

Tape quantity 2,000 pcs./reel

Precautions -

Soldering Information

Reflow soldering

- The following soldering paste is recommended: Melting temperature: 178 to 192°C Our and the solution of a 2020 (Dt 0.72)
 - Composition: Sn 63%, Pb 37%
- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25W, and keep the temperature of the iron tip at 300°C or below.
- Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions: Temperature: 10 to 30°C

Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Photomicrosensor-Transmissive – EE-SX1139

OMRON

Features

- Ultra-compact with a 4.3-mm-wide sensor and a 2-mm-wide slot.
- High resolution with a 0.5-mm-wide aperture.
- A light current (I_L) of 0.4 mA minimum with a forward current of (I_F) 10 mA.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	75 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 85°C
	Storage	Tstg	-40°C to 100°C
	Soldering	Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is10 $\!\mu s$ maximum with a frequency of 100Hz.

3. Complete soldering within 3 seconds for reflow soldering and within 3 seconds for manual soldering.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.4 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	V _R = 4 V
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.4 mA min.	$I_F=10 \text{ mA, } V_{CE}=5 \text{ V}$
	Dark current	I _D	2 nA typ., 100 nA max.	$V_{CE} = 10 \text{ V}, 0 \text{ x}$
	Leakage current	I _{LEAK}	-	-
	Collector Emitter saturated voltage	V _{CE} (sat)	0.4 V max.	$I_F = 20$ mA, $I_L = 0.1$ μ A
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CF} = 5 V$
Rising time		tr	30 μs typ., 150 μs max.	$\label{eq:V_CC} \begin{array}{l} V_{CC}=5 \ V, \ R_L=1 \ k\Omega, \\ I_L=100 \ \mu A \end{array}$
Falling time		tf	30 μs typ., 150 μs max	$\label{eq:V_CC} \begin{array}{l} V_{CC}=5 \ V, \ R_L=1 \ k\Omega, \\ I_L=100 \ \mu A \end{array}$

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.	Name
А	Anode
к	Cathode
С	Collector
E	Emitter

Unless otherwise specified the tolerances are ±0.1 mm.

Engineering Data

0.6 1.2 1.4 1.6

Relative Light Current vs. Ambi-

ent Temperature Characteristics

20 40 60 80

Sensing Position Characteristics

Ambient temperature Ta (°C)

ΠΠ

0

(Typical)

(%)

B

light

å

-40 -20

(Typical)

- 120 10

Forward voltage V_F (V)

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Distance d (mm)

OMRON

Dark Current vs. Ambient **Temperature Characteristics** (Typical)

Ambient temperature Ta (°C)

Response Time Measurement Circuit

Features

- Ultra-compact model
- Photo IC output model
- Operates at V_{cc} of 2.2 to 7 V
- High speed response

OMRON

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Supply voltage	V _{CC}	9 V
	Output voltage	V _{OUT}	17 V
	Output current	Iout	8 mA
	Permissible output dissipation	Pout	80 mW (see note 1)
Ambient temperature	Ambient temperature Operating		-25°C to 85°C
	Storage	Tstg	-40°C to 100°C
	Soldering	Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C. 2. Complete soldering within 3 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item		Value	Condition	
Emitter	Forward voltage	V _F	1.2 V typ., 1.4 V max.	I _F = 20 mA	
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_R = 4 V$	
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA	
Detector	Power supply voltage	V _{cc}	2.2 V min., 7 V max.	-	
	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	V_{CC} = 2.2 to 7 V, I_{OL} = 8 mA, I_{F} = 5 mA	
	High-level output voltage	I _{OH}	10 µA max.	V_{CC} = 2.2 to 7 V, I_{F} = 0 mA, V_{O} = 17 V	
	Current consumption	Icc	2.3 mA typ., 4 mA max.	$V_{CC} = 7 V$	
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	V _{CC} = 2.2 to 7 V	
LED current v	vhen output is ON	I _{FT}	1.1 mA typ., 2.5 mA max.	V _{CC} = 2.2 to 7 V	
Hysteresis		ΔH	21% typ.	V _{CC} = 2.2 to 7 V (see note 1)	
Response frequency		f	3 kHs min.	V_{CC} = 2.2 to 7 V, I_{F} = 5 mA, I_{OL} = 8mA (see note 2)	
Response delay time		t _{PLH}	5 μs min.	$V_{\rm CC}$ = 2.2 to 7 V, $I_{\rm F}$ = 5 mA, $I_{\rm OL}$ = 8mA (see note 3)	
Response delay time		t _{PHL}	18 μs typ.	$V_{\rm CC}$ = 2.2 to 7 V, $I_{\rm F}$ = 5 mA, $I_{\rm OL}$ = 8mA (see note 3)	

OMRON

Dimensions

G

Terminal No. Name Anode Cathode Supply voltage V_{CC} Output (OUT) 0 Ground (GND)

кC

Unless otherwise specified the tolerances are ±0.15mm.

Photomicrosensor-Transmissive - EE-SX4139

- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC is turned from ON to OFF and when the photo IC is turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below (P.P.S = pulse/s).

(mW)

d

able cur

Output

P

Vol(V)

voltage

output

evel

NO

(IIIS)

t PLH

Hd

e delay

Se

ň

Engineering Data

(Am

ц

Ħ

P

Eor

Forward Current vs. Collector

Dissipation Temperature Rating

IFT ON

Ta = 25°C

 $R_1 = 1 k\Omega$

TPLH

Low-level Output Voltage vs. **Output Current (Typical)**

Ambient temperature Ta (°C)

LED Current vs. Ambient Temper-

ature Characteristics (Typical)

Ambient temperature Ta (°C)

Current Consumption vs. Supply Voltage (Typical)

A IF (m) ť

Voltage Characteristics (Typical)

Ta = 25°C

V_{CC} = 5 V $l_F = 5 \text{ mA}$

2=5

= ()

Output current I_C (mA)

Response Delay Time vs. Forward

Current (Typical)

= 5 V

680 0

current | E 3 4 5 5 7 8

Supply voltage V_{CC} (V)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Repeat Sensing Position Characteristics (Typical)

3. The following illustrations show the definition of response

delay time.

Input

Output

IFT (mA)

Forward current I_F (mA)

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- Allows highly precise sensing with a 0.2-mmwide sensing aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{CC}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	Ι _{ουτ}	16 mA
	Permissible output dissipation	Pout	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 60°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	V_{CC} = 4.5 to 16 V, I_{OL} = 16 mA, I_{F} = 15 mA
	High-level output voltage	V _{OH}	15 V min.	$Vcc = 16 \text{ V}, \text{ R}_L = 1 \text{ k}\Omega, \text{ I}_F = 0 \text{ mA}$
	Current consumption	I _{CC}	5 mA typ., 10 mA max.	V _{CC} = 16 V
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	$V_{CC} = 4.5$ to 16 V
LED current when output is OFF		I _{FT}	10 mA typ., 15 mA max.	$V_{CC} = 4.5$ to 16 V
LED current	when output is ON			
Hysteresis		∆H	15% typ.	V_{CC} = 4.5 to 16 V (see note 1)
Response frequency		f	3 kHz min.	$V_{\rm CC}$ = 4.5 to 16 V, I_F = 15 mA, I_{\rm OL} = 16 mA (see note 2)
Response delay time		t _{PLH} (t _{PHL})	3 μs typ.	$V_{\rm CC}$ = 4.5 to 16 V, I_F = 15 mA, I_{\rm OL} = 16 mA (see note 3)
Response delay time		t _{PHL} (t _{PLH})	20 µs typ.	V_{CC} = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, I_{OL} = 16 mA (see note 3)

OMRON

Dimensions

Note: All units are in millimeters unless stated.

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Dimensions	Tolerance
3 mm max.	±0.125
3 < mm ≤ 6	±0.150
6 < mm ≤ 10	±0.180
10 < mm ≤ 18	±0.215
18 < mm ≤ 30	±0.260

Photomicrosensor-Transmissive - EE-SX493

I ⊨ (mA)

current

Ē

Forw

OU(V)

ge

olta

output

evel

NO 0.00

8

PLH (

-

H

-

time

delay

Se Respon

>

- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.

delay time.

Engineering Data

Ambient temperature Ta (°C)

Current Consumption vs. Supply Voltage (Typical)

Forward Current vs. Forward Voltage Characteristics (Typical)

> 04 05 0.8

Low-level Output Voltage vs.

Output Current (Typical)

Response Delay Time vs.

Forward Current (Typical)

V_{CC} = 5 V

 $R_L = 330 \Omega$ Ta = 25°C

Ta = -30°C

= 70°C Ta

Forward voltage V_F (V)

12 14

 $a = 25^{\circ}$

¥=15

嘲

Output current I_C (mA)

(EE-SX3

(EE-SX4

V_{CC} = 5 V

15 m

Ta = 25°C

LED Current vs. Supply Voltage (Typical)

3. The following illustrations show the definition of response

OMRON

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Repeat Sensing Time Position

Photomicrosensor-Transmissive - EE-SX1055

Features

- Longer leads allow the sensor to be mounted to a 1.6-mm thick board.
- 5.4-mm-tall compact model.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter Voltage	V _{CEO}	30 V
	Emitter-Collector Voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item		Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	I _D	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_{\rm F} = 20 \text{ mA}, I_{\rm L} = 0.1 \text{mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 V$
Rising time		tr	4 µs typ.	V_{CC} = 5 V, RL = 100 Ω , IL = 5 mA
Falling time		tf	4 µs typ.	V_{CC} = 5 V, RL = 100 Ω , IL = 5 mA

Characteristics (Typical)

Forward current I_F (mA)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, t	the tolerances	are as	shown	below
-------------------------------	----------------	--------	-------	-------

Terminal No.	Name	Г
L.	Anode	3
(Cathode	3
;	Collector	6
	Emitter	1
		- 1

Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Engineering Data

Forward Current vs. Collector **Dissipation Temperature Rating**

E C

tr, tf (_js)

Ta = -30°C

Ta = 25°C

 $T_a = 70^{\circ}C$

Light Current vs. Forward Current Characteristics (Typical)

OMRON

Light Current vs. Collector-Emitter **Relative Light Current vs. Ambient** Voltage Characteristics (Typical) (Typical)

Rel

60 L

-20

Temperature Characteristics

Forward voltage V_F (V)

02 04 06 08 1

1.2 1.4 1.6 1.8

(Pu) (ID) Dark 0.00 10 20 30 40 50 Ambient temperature Ta (°C)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics (Typical)

20

Ambient temperature Ta (°C)

40 60 80

I_F = 20 mA V_{CE} = 10 V Ta = 25°C

(Center of optical axis)

-0.5 -0.25 0

Response Time Measurement

0.25 0.5 0.75 1.0 Distance d (mm)

Dark Current vs. Ambient

(Typical)

10.0

Temperature Characteristics

Circuit

Photomicrosensor-Transmissive – EE-SX1046

OMRON

Features

- With a horizontal sensing aperture.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	920 nm typ.	I _F = 20 mA
Detector	Light current	IL.	1.2 mA min., 14 mA Max.	$I_F = 20$ mA, $V_{CE} = 5$ V
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_{\rm F} = 20$ mA, $I_{\rm L} = 0.1$ mA
	Peak spectral sensitivity wavelength	λ_P	850 nm typ.	$V_{CC} = 10 V$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 µs typ.	V_{CC} = 5 V, R_L = 100 Ω , I_L = 5 mA

OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
А	Anode
к	Cathode
С	Collector
E	Emitter

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Engineering Data

0.2 0.4 0.6 0.8 1 12 14 16 18 Forward voltage VF (V)

Relative Light Current vs. Ambi-

ent Temperature Characteristics

IF = 20 mA

20 40 50 80

I_F = 20 mA V_{CE} = 10 V Ta = 25°C

Ш

Ambient temperature Ta (°C)

Sensing Position Characteristics

(Typical)

(%)

_ +

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

60 -40 -20

(Typical)

0

OMRON

Dark Current vs. Ambient **Temperature Characteristics** (Typical)

Response Time Measurement Circuit

Photomicrosensor-Transmissive - EE-SX1082

Features

- Horizontal sensing aperture.
- PCB mounting type.
- High resolution with 0.2-mm wide aperture.

OMRON

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 85°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item		Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	920 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.12 mA min.	$I_{F} = 20 \text{ mA}, V_{CE} = 5 \text{ V}$
	Dark current	I _D	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.08 V typ., 0.4 V max.	$I_F=20~mA,~I_L=0.05~\mu A$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{\rm CC} = 10 \text{ V}$
Rising time		tr	100 µs typ.	V_{CC} = 5 V, R_L = 50 kΩ, I_L = 0.1 mA
Falling time		tf	1,000 µs typ.	$V_{CC} = 5$ V, $R_L = 50$ k Ω , $I_L = 0.1$ mA

OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.	Name
A	Anode
к	Cathode
С	Collector
E	Emitter

Unless otherwise specified, the tolerances are ±0.02 mm

Engineering Data

Forward Current vs. Collector

Light Current vs. Forward Current Characteristics (Typical)

OMRON

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resis-

tance Characteristics (Typical)

tf (µs)

Ŧ, time

Response

IF = 20 mA (%) _ ant light curr e/e Sel

Relative Light Current vs. Ambi-

ent Temperature Characteristics

0.2

(Typical)

60 40

-20

Dark Current vs. Ambient **Temperature Characteristics** (Typical)

Response Time Measurement Circuit

(Typical) I_F = 20 mA V_{CE} = 10 V Ta = 25°C

Ambient temperature Ta (°C)

Sensing Position Characteristics

0 20 40 60 80

(Center of

optical axis)

0.3

100

0.2 Distance d (mm)

773

Photomicrosensor-Transmissive – EE-SX1106

OMRON

Features

- Ultra compact with a slot width of 3 mm.
- PCB mounting type.
- High resolution with 0.4-mm wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	-
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	4.5 V
	Collector current	Ic	30 mA
	Collector dissipation	P _C	80 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 3 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.3 V typ., 1.6 V max.	$I_F = 50 \text{ mA}$
	Reverse current	I _R	10 µA max.	$V_R = 5 V$
	Peak emission wavelength	λ _P	950 nm typ.	$I_F = 50 \text{ mA}$
Detector	Light current	IL.	0.2 mA min.	$I_F=20\ mA,\ V_{CE}=5\ V$
	Dark current	I _D	500 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.4 V max.	I_F = 20 mA, I_L = 0.1 μA
	Peak spectral sensitivity wavelength	λ_P	800 nm typ.	$V_{CE} = 5 V$
Rising time		tr	10 µs typ.	$V_{CC}=5~V,~R_L=100\Omega,~I_L=20~mA$
Falling time		tf	10 µs typ.	V_{CC} = 5 V, R_L = 100 Ω , I_L = 20 mA

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Unless otherwise specified, the tolerances are \pm 0.2 mm.

Ta = 25°C

Forward current IF (mA)

Light Current vs. Forward Current

Characteristics (Typical)

Dark Current vs. Ambient

(Typical)

30 -20

Temperature Characteristics

Engineering Data

Ambient temperature Ta (°C) Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Collector-Emitter voltage V_{CE} (V)

Response Time vs. Light Current Characteristics (Typical)

Forward Current vs. Forward

Voltage Characteristics (Typical)

Forward voltage VF (V) Relative Light Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Sensing Position Characteristics (Typical)

20 30 40 50 60 70 80 9 Ambient temperature Ta (°C)

Features

- Ultra-compact with a 6-mm-wide sensor and a 3-mm-wide slot.
- PCB surface mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	IF	25 mA (see note 1)
	Pulse forward current	I _{PF}	100 A (see note 2)
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter Voltage	V _{CEO}	20 V
	Emitter-Collector Voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	75 mW (see note 1)
Ambient temperature	Operating	Topr	-30°C to 85°C
	Storage	Tstg	-40°C to 90°C
	Reflow soldering	Tsol	240°C (see note 3)
	Manual soldering	Tsol	300°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Duty: 1/100: Pulse width: 0.1 ms

3. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.1 V typ., 1.3 V max.	I _F = 5 mA
	Reverse current	IR	10 µA max.	$V_R = 5 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	50 μA min., 150 μA max. 500 μA max.	$I_F = 5$ mA, $V_{CE} = 5$ V
	Dark current	ID	100 nA max.	$V_{CE} = 10$ V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F=20 \text{ mA}, \ I_L=50 \ \mu\text{A}$
	Peak spectral sensitivity wavelength	λ _P	900 nm typ.	-
Rising time		tr	10 μs typ.	V_{CC} = 5 V. R_L = 1 k\Omega, I_L = 100 μA
Falling time		tf	10 µs typ.	V_{CC} = 5 V. R_L = 1 k\Omega, I_L = 100 μA

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Terminal No.	Name
A	Anode
К	Cathode
C	Collector
E	Emitter

Unless otherwise specified, the tolerances are ± 0.15mm

1 L (%)

ent

CI

light

vel

Rel

1 L (%)

current |

Relative light

0.6 -0.4 -0.2

0 40

Engineering Data

Forward Current vs. Collector **Dissipation Temperature Rating**

Ambient temperature Ta (°C)

Light Current vs. Collector-Emitter

Voltage Characteristics (Typical)

F (mA)

t curro

1 L (mA)

t

uno

ight

-20

Forward Current vs. Forward Voltage Characteristics (Typical)

Ta=25'C

k=10mA

k=6mA

Relative Light Current vs. Ambient

Temperature Characteristics (Typical)

Light Current vs. Forward Current Characteristics (Typical)

OMRON

Forward current I_F (mA) Dark Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Sensing Position Characteristics (Typical)

tr, tf (µs) time Re

Collector-Emitter voltage VCE (V)

Response Time vs. Load Resistance

Characteristics (Typical)

Load resistance RL (kΩ) **Response Time Measurement Circuit**

Sensing Position Characteristics (Typical)

Ir=5mA Vct=5V

-10+

0.2

Distance d (mm)

Ir=5mA J -12-09 -0.6 -0.3 0 0.3 0.6 0.9 1.

L(%) t

Tape and Reel

Unit: mm (inch).

Reel

Tape

Tape configuration

Tape quantity 1,000 pcs./reel

Photomicrosensor-Transmissive – EE-SX1109

OMRON

Precautions

Soldering Information

Reflow soldering

- The following soldering paste is recommended: Melting temperature: 178 to 192°C
 - Composition: Sn 63%, Pb 37%
- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25W, and keep the temperature of the iron tip at 300°C or below.
- Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions: Temperature: 10 to 30°C

Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Anode

Cathode Collector

Emitter

Name

Terminal No.

С

Unless otherwise sp	pecified the tolerances	are ±0.2mm.
---------------------	-------------------------	-------------

Features

- General-purpose model with a 3-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.
- With a positioning boss.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25° C.

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	ter Forward voltage		1.2 V typ., 1.4 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_{F} = 20 \text{ mA}, V_{CE} = 5 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 20 V, 0 ℓ _X
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=40\ m\text{A},\ I_L=0.5m\text{A}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 V$
Rising time	ng time tr $4 \ \mu s \ typ.$ $V_{CC} =$		V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA	
Falling time	Falling time		4 µs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

Engineering Data

0.8 1.2 1.4 1.6 Forward voltage VF (V)

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resis-

tance Characteristics (Typical)

time tr, tf (µs)

Response

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

Distance d (mm)

Dark Current vs. Ambient **Temperature Characteristics** (Typical)

Forward current IF (mA)

Response Time Measurement

Circuit

Photomicrosensor-Transmissive - EE-SX398/-SX498 OMRON

Features

Incorporates an IC chip with a built-in detector element and amplifier.

Incorporates a detector element with a built-in temperature compensation circuit.

- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- High resolution with a 0.5-mm-wide sensing aperture.
- Dark ON model (EE-SX398)
- Light ON model (EE-SX498)

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{cc}	16 V
Output voltage		V _{OUT}	28 V
	Output current	I _{OUT}	16 mA
	Permissible output dissipation	Pout	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item		Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	
	High-level output voltage	V _{OH}	15 V min.	Vcc = 16 V, R_L = 1 k Ω , I_F = 5 mA (EE-SX398), I_F = 0 mA (EE-SX498)
	Current consumption	I _{cc}	3.2 mA typ., 10 mA max.	$V_{CC} = 16 V$
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	V_{CC} = 4.5 to 16 V
LED current	LED current when output is OFF LED current when output is ON		2 mA typ., 5 mA max.	V _{CC} = 4.5 to 16
Hysteresis		∆H	15% typ.	V _{CC} = 4.5 to 16 V (see note 1)
Response frequency		f	3 kHz min.	$V_{\rm CC}$ = 4.5 to 16 V, I_F = 15 mA, I_{\rm OL} = 16 mA (see note 2)
Response delay time		t _{PLH} (t _{PHL})	3 μs typ.	$V_{\rm CC}$ = 4.5 to 16 V, I_F = 15 mA, I_{\rm OL} = 16 mA (see note 3)
Response de	Response delay time		20 µs typ.	V_{CC} = 4.5 to 16 V, I_{F} = 15 mA, I_{OL} = 16 m (see note 3)

IL (mA)

ight current

Light Current vs. Forward Current Characteristics (Typical)

OMRON

Ta = 25°C VCE = 51

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
A	Anode
к	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Photomicrosensor-Transmissive – EE-SX398/-SX498 OMRON

- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by

rotating the disk as shown below.

3. The following illustrations show the definition of response

delay time. The value in the parentheses applies to the

Engineering Data

Note: The values in the parentheses apply to the EE-SX498.

04 05 0.5

LED Current vs. Ambient Temper-

ature Characteristics (Typical)

Ambient temperature Ta (°C)

Current Consumption vs. Supply

Forward Current vs. Forward Voltage Characteristics (Typical) (MM)

F (mA)

current

ē

LED Current vs. Supply Voltage (Typical)

EE-SX498.

Low-level Output Voltage vs. **Output Current (Typical)**

Output current I_C (mA)

Response Delay Time vs. Forward Current (Typical)

788

 $Ta = 25^{\circ}C$

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Repeat Sensing Position Characteristics (Typical)

Photomicrosensor-Transmissive – EE-SV3

OMRON

Features

- High-resolution model with a 0.2-mm-wide or 0.5-mm-wide sensing aperture, highsensitivity model with a 1-mm-wide sensing aperture, and model with a horizontal sensing aperture are available.
- Solder terminal models: EE-SV3/-SV3-CS/-SV3-DS/-SV3-GS
- PCB terminal models: EE-SV3-B/-SV3-C/-SV3-D/-SV3-G

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

lt	em	Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector Collector-Emitter Voltage		V _{CEO}	30 V
	Emitter-Collector Voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol		Value			Condition
			EE-SV3(-B)	EE-SV3-C(S)	EE-SV3-D(S)	EE-SV3-G(S)	
Emitter	Forward voltage	V _F	1.2 V typ., 1.5	V max.			I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 1	Э.01 μA typ., 10 μA max.			$V_R = 4 V$
	Peak emission wavelength	λρ	940 nm typ.	940 nm typ.			I _F = 20 mA
Detector	Light current	IL.	0.5 to 14 mA	1 to 28 mA	0.1 mA min.	0.5 to 14 mA	$I_F = 20 \text{ mA},$ $V_{CE} = 10 \text{ V}$
	Dark current	I _D	2 nA typ., 200	2 nA typ., 200 nA max.			$V_{CE} = 10 \text{ V}, 0 \ell x$
	Leakage current	ILEAK	-				-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max. – 0.1 V typ. 0.4 V max.		$I_F = 20 \text{ mA}, \\ I_L = 0.1 \mu\text{A}$		
	Peak spectral sensitivity wavelength	λρ	850 nm typ.			V _{CE} = 10 V	
Rising time		tr	4 μs typ.				$V_{CC} = 5 V$,
Falling time		tf	4 μs typ.				$I_L = 5 \text{ mA}$

OMROF

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Model	Aperture (a x b)
EE-SV3(-B)	2.1 x 0.5
EE-SV3-C(S)	2.1 x 1.0
EE-SV3-D(S)	2.1 x 0.2
EE-SV3-G(S)	0.5 x 2.1

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerence
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

OMRON

Engineering Data

Forward Current vs. Forward

Forward voltage V_F (V)

Light Current vs. Collector-Emitter Voltage Characteristics (EE-SV3(-B))

Ta = 25°C

= 50 mA

= 40 mA

Collector-Emitter voltage V_{CE} (V)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics (EE-SV3-G(S))

0.2 0.4 0.6 0.8 12 1.4 1.6 1.8

Relative Light Current vs. Ambi-

Ambient temperature Ta (°C)

Sensing Position Characteristics (EE-SV3-D(S))

Sensing Position Characteristics (EE-SV3-C(S))

IF = 20 mA V_{CE} = 10 V Ta = 25°C

10 15

optical a

2.0

Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient **Temperature Characteristics** (Typical)

Ambient temperature Ta (°C)

Sensing Position Characteristics (EE-SV3(-B))

Distance d (mm)

Response Time Measurement Circuit

Photomicrosensor-Transmissive - EE-SX1071

OMRON

Features

- General-purpose model with a 3.4-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Emitter Forward current		50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item		Value	Condition
Emitter	Emitter Forward voltage		1.2 V typ., 1.5 V max.	$I_F = 30 \text{ mA}$
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F=20\ mA,\ V_{CE}=10\ V$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	I _F = 20 mA, I _L = 0.1 mA
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 V$
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	$V_{CC}=5$ V. $R_L=100\Omega,\ I_L=5\ mA$

ent Temperature Characteristics (Typical) (%)

_

t

LING

ight

(%)

_

ant

curr light

Relative

Note: All units are in millimeters unless otherwise indicated.

Terminal No.	Name
A	Anode
К	Cathode
C	Collector
E	Emitter

Unless otherwise specified, the tolerances are shown below

Dimensions	Tolerance
mm max.	±0.3
8 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
0 < mm ≤ 18	±0.55
8 < mm ≤ 30	±0.65

Photomicrosensor-Transmissive - EE-SX1071

(%)

t

3

light

å

60 L -40

Engineering Data

Forward current I_F (mA)

Light Current vs. Collector-Emitter Characteristics (Typical)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

0.6 0.8

a = -30°C

= 25°C

Ta = 70°C

Dark Current vs. Ambient Temperature Characteristics (Typical)

-20 -10 0 10 20 30 40 50 60 70 80 9 Ambient temperature Ta (°C)

Characteristics (Typical)

Circuit

(Center of optical axis) -+ 0+

0 0.25 0.5 0.75 1.0

Distance d (mm)

Response Time vs. Load Resistance

tr, tf (µs)

ame

Re

Sensing Position Characteristics (Typical)

Response Time Measurement

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Features

- General-purpose model with a 3.4-mm-wide slot.
- Mounts to PCBs or connects to connectors.
- High resolution with a 0.5-mm-wide aperture.
- OMRON's XK8-series Connectors can be connected without soldering. Contact your OMRON representative for information on obtaining XK8-series Connectors.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current		1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
Collector current		I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter Forward voltage		V _F	1.2 V typ., 1.5 V max.	$I_F = 30 \text{ mA}$
Reverse current		I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
Peak emission wavelength		λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F=20\ m\text{A},\ V_{CE}=10\ V$
	Dark current	I _D	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
Leakage current		I _{LEAK}	-	-
Collector-Emitter saturated voltage		V _{CE} (sat)	0.15 V typ., 0.4 max.	$I_F=20\ m\text{A},\ I_L=0.1\ m\text{A}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 \text{ V}$
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω,I_L = 5 mA
Falling time		tf	4 μs typ.	$V_{CC}=5$ V. $R_L=100\Omega,\ I_L=5\ mA$

OMRON

Engineering Data

Light Current vs. Collector-Emitter Characteristics (Typical)

Relative Light Current vs. Ambient **Temperature Characteristics (Typical)**

1.2 1.4

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

(Typical)

t

ight

Φ

optical axis)

-+-0-+

UU

Response Time Measurement

Circuit

Photomicrosensor-Transmissive – EE-SH3 Series OMRON

Features

- High-resolution model with a 0.2-mm-wide or 0.5-mm-wide sensing aperture. high-sensitivity model with a 1-mm-wide sensing aperture, and model with a horizontal sensing aperture are available.
- Solder terminal models: EE-SH3/-SH3-CS/-SH3-DS/-SH3-GS
- PCB terminal models: EE-SH3-B/-SH3-C/-SH3-D/-SH3-G

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value	
Emitter Forward current I, Pulse forward current I, Reverse Voltage		l _F	50 mA (see note 1)	
		I _{FP}	1 A (see note 2)	
		V _R	4 V	
Detector	Collector-Emitter voltage	V _{CEO}	30 V	
	Emitter-Collector voltage	V _{ECO}	-	
	Collector current	Ic	20 mA	
	Collector dissipation	Pc	100 mW (see note 1)	
Ambient temperature Operating Storage		Topr	-25°C to 85°C	
		Tstg	-30°C to 100°C	
Soldering temperature		Tsol	260°C (see note 3)	

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Item		Symbol		Value			
			EE-SH3(-B)	EE-SH3 -C(S)	EE-SH3 -D(S)	EE-SH3 -G(S)	
Emitter	Forward voltage	V _F	1.2 V typ., 1.5	1.2 V typ., 1.5 V max.			$I_F = 30 \text{ mA}$
	Reverse current	I _R	l _R 0.01 μA typ., 10 μA max.			$V_{R} = 4 V$	
	Peak emission wavelength	λ_P	940 nm typ.	940 nm typ.			$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 to 14 mA typ.	1 to 28 mA	0.1 mA min.	0.5 to 14 mA	$\begin{array}{l} I_{F}=20 \text{ mA,} \\ V_{CE}=10 \text{ V} \end{array}$
	Dark current	ID	2 nA typ., 200 nA max.			$\begin{array}{l} V_{CE}=10 \ V \\ 0 \ \ell x \end{array}$	
	Leakage current	I _{LEAK}	-				-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max. – 0.1 V typ. 0.4 max.		0.1 V typ. 0.4 max.	$I_F = 20 \text{ mA}, \\ I_L = 0.1 \text{ mA}$	
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.		$V_{CE} = 10 \text{ V}$		
Rising time		tr	4 μs typ.				$V_{CC} = 5 V.$
Falling time		tf	4 µs typ.		$I_L = 5 \text{ mA}$		

Electrical and Optical Characteristics (Ta = 25°C)

-0.5 -0.25 0 0.25 0.5 0.75 1.0

Distance d (mm)

OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.

Model	Aperture (a x b)	
EE-SH3(-B)	2.1 x 0.5	
EE-SH3-C(S)	2.1 x 1.0	
EE-SH3-D(S)	2.1 x 0.2	
EE-SH3-G(S)	0.5 x 2.1	

.2±0.2

Name	Dimensions
Anode	3 mm max.
Cathode	3 < mm ≤ 6
Collector	6 < mm ≤ 10
Emitter	10 < mm ≤ 18
	18 < mm < 30

799

Unless otherwise specified, the tolerances are shown below

Dimensions	Tolerance
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

8

light

ñ

Engineering Data

Forward Current vs. Collector

Forward Current vs. Forward

OMRON

Light Current vs. Collector-Emitter Characteristics (Typical)

Response Time vs. Load Resistance

Sensing Position Characteristics

(EE-SH3-G(S))

Characteristics (Typical)

Sensing Position Characteristics (EE-SH3(-B))

I_F = 20 mA V_{CE} = 10 V Ta = 25°C IL (%) opfical as ---0it CUL light TU Rela -0.5 -0.25 0.25 Distance d (mm)

Response Time Measurement Circuit

Dark Current vs. Ambient Temperature

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

IF = 20 mA VCE = 5 V

Ambient temperature Ta (°C)

Sensing Position Characteristics (EE-SH3-D(S))

I_F = 20 mA V_{CE} = 10 V Ta = 25°C (%) optical axis ant D idht

-0.2

-0.1

Sensing Position Characteristics (EE-SH3-C(S))

800

0 0.1

Distance d (mm)

Features

High-resolution model with a 0.2-mm-wide sensing aperture, high-sensitivity model with a 1-mm-wide sensing aperture, and model with a horizontal sensing aperture are available.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value	
Emitter Forward current I _F Pulse forward current I _F		I _F	50 mA (see note 1)	
		I _{FP}	1 A (see note 2)	
	Reverse Voltage	V _R	4 V	
Detector	Collector-Emitter voltage	V _{CEO}	30 V	
	Emitter-Collector voltage	V _{ECO}	-	
Collector current		I _C	20 mA	
	Collector dissipation	Pc	100 mW (see note 1)	
Ambient temperature Operating Storage		Topr	-25°C to 85°C	
		Tstg	-30°C to 100°C	
Soldering temperature		Tsol	260°C (see note 3)	

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25° C.

2. The pulse width ia 10 μ s maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value			Condition
			EE-SJ3-C	EE-SJ3-D	EE-SJ3-G	
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V ma	1.2 V typ., 1.5 V max.		I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA	max.		$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.			$I_F = 20 \text{ mA}$
Detector	Light current	IL.	1 to 28 mA typ.	0.1 mA min.	0.5 to 14 mA	$\begin{array}{l} I_F = 20 \text{ mA,} \\ V_{CE} = 10 \text{ V} \end{array}$
	Dark current	ID	2 nA typ., 200 nA max.			V _{CE} = 10 V 0ℓ x
	Leakage current	I _{LEAK}	-		-	
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	-	0.1 V typ., 0.4 max.	$\begin{array}{l} I_F = 20 \text{ mA}, \\ I_L = 0.1 \text{ mA} \end{array}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.			V _{CE} = 10 V
Rising time		tr	4 μs typ.			$V_{\rm CC} = 5 \text{ V.}$
Falling time		tf	4 μs typ.			$I_{L} = 10002$, $I_{L} = 5 \text{ mA}$

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Model	Aperture (a x b)
EE-SH3(-B)	2.1 x 1.0
EE-SH3-C(S)	2.1 x 0.2
EE-SH3-D(S)	0.5 x 2.1

OMRON

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
А	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

OMRON

Engineering Data

Note: The values in the parentheses apply to EE-SX4070.

Forward voltage VF (V)

Light Current vs. Collector-Emitter Characteristics (EE-SJ3-G)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics (EE-SJ3-C)

Ambient temperature Ta (°C)

(%)

ent

light

đ

Relativ

Sensing Position Characteristics (EE-SJ3-D)

Distance d (mm)

Circuit

Relative Light Current vs. Ambient Dark Current vs. Ambient Temperature Temperature Characteristics (Typical) Characteristics (Typical)

(EE-SJ3-G)

Response Time Measurement

Sensing Position Characteristics

Distance d (mm)

Photomicrosensor-Transmissive - EE-SX3088/-SX4088 OMRON

Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- A wide supply voltage range: 4.5 to 16 VDC.
- Directly connects with C-MOS and TTL.
- High resolution with a 0.5-mm-wide sensing aperture.
- Dark ON model (EE-SX3081).
- Light ON model (EE-SX4081).
- OMRON's XK8-series Connectors can be connected without soldering. Contact your OMRON representative for information on obtaining XK8-series Connectors.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{cc}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	I _{OUT}	16 mA
	Permissible output dissipation	Pout	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	
	High-level output voltage	V _{OH}	15 V min.	
	Current consumption	Icc	3.2 mA typ., 10 mA max.	$V_{CC} = 16 V$
	Peak spectral sensitivity wavelength	λ _P	870 nm	V_{CC} = 4.5 to 16 V
LED current when output is OFF		I _{FT}	2 mA typ., 5 mA max.	V _{CC} = 4.5 to 16 V
LED current when output is ON				
Hysteresis		ΔH	15% typ.	$V_{\rm CC}$ = 4.5 to 16 V (see note 1)
Response fr	equency	f	3 kHz min.	$V_{\rm CC}$ = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, $I_{\rm OL}$ = 16mA (see note 2)
Response delay time		t _{PLH} (t _{PHL})	3 μs typ.	$V_{\rm CC}$ = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, $I_{\rm OL}$ = 16 mA (see note 3)
Response delay time		t _{PHL} (t _{PLH})	20 µs typ.	$V_{\rm CC}$ = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, $I_{\rm OL}$ = 16 mA (see note 3)

Photomicrosensor-Transmissive - EE-SX3088/-SX4088 OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

805

Terminal No.	Name
A	Anode
к	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

κО

Α

- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

3. The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESX4088.

Photomicrosensor-Transmissive - EE-SX3088/-SX4088 OMRON

Engineering Data

Note: The values in the parentheses apply to EE-SX4080.

LED Current vs. Ambient Temperature Characteristics (Typical)

Current Consumption vs. Supply

Voltage (Typical)

Low-level Output Voltage vs. **Output Current (Typical)**

IF (mA)

current

P

5

ab

10

=

outpu

evel

N

(8)

PLH (

-

10

¢ 5

lelav

Se

Re

OL(V) Vcc = 5 V 0 mA (15 mA

2=5

Output current Ic (mA)

Current (Typical)

(MM) Ta = 25°C 0 mA (15 mA CC 2=5 E S

Supply voltage V_{CC} (V)

Response Delay Time vs. Forward

Vcc = 5 V = 330 \ Ta = 25°C 12 (EE-SX3 (EE-SX4DD) 100

Forward current IF (mA)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Distance d (mm)

0.00

Photomicrosensor-Transmissive – EE-SG3/EE-SG3-B OMRON

Features

- Dust-proof model.
- Solder terminal model (EE-SG3).
- PCB terminal model (EE-SG3-B).

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25° C.

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	2 mA min., 40 mA max.	I_F = 15 mA, V_{CE} = 10 V
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 30 \text{ mA}, I_L = 1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 \text{ V}$
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 µs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA

Photomicrosensor-Transmissive – EE-SG3/EE-SG3-B OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
А	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Photomicrosensor-Transmissive – EE-SG3/EE-SG3-B OINRON

Engineering Data

5 10 0 02 04 06 08 1 12 14 16 18 Forward voltage V_F (V)

Light Current vs. Collector-Emitter Characteristics (Typical)

Response Time vs. Load Resistance

Load resistance RL (kQ)

Characteristics (Typical)

tr, tf (µs)

-5

e c

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

Response Time Measurement Circuit

Ambient temperature Ta (°C)

Light Current vs. Forward Current

Forward current IF (mA)

Dark Current vs. Ambient Temperature

Characteristics (Typical)

Ta = 25°C V_{CE} = 10 V

Characteristics (Typical)

(MA)

-

ant

III

Light

10.00

0.00

Photomicrosensor-Transmissive – EE-SX1128

OMRON

Features

- General-purpose model with a 4.2-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.
- Horizontal sensing aperture.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	IF	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector Collector-Emitter Voltage		V _{CEO}	30 V
	Emitter-Collector Voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25° C.

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 mA min., 10 mA max.	I _F = 20 mA, V _{CE} = 10 V
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	I _F = 20 mA, I _L = 1 mA
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 \text{ V}$
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 µs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA

Note: All units are in millimeters unless otherwise indicated.

811

Internal Circuit

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Unless otherwise specified, the tolerances are shown below

Dimensions	Tolerance
0 < mm ≤ 4	±0.100
4 < mm ≤ 18	±0.200

Photomicrosensor-Transmissive - EE-SX1128

Engineering Data

(mA)

ц.

ant

1no

Forward Current vs. Collector **Dissipation Temperature Rating**

Forward Current vs. Forward

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

-0.5 -0.25

0

812

Distance d (mm)

Sensing Position Characteristics (Typical)

Response Time Measurement Circuit

I_F = 20 mA V_{CE} = 10 V Ta = 25°C

(Center of optical axis)

0.25 0.5 0.75

Input--111 Vcc $\Rightarrow =$ Outpu RI.

Response Time vs. Load Resistance Characteristics (Typical)

(Typical)

Dark Current vs. Ambient

Temperature Characteristics

1.0

Note: All units are in millimeters unless otherwise indicated.

Features

- General-purpose model with a 5-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter Forward current		I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_{F} = 15 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE}=10 \text{ V}, 0 \ell x$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 V$
Rising time		tr	4 µs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 µs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA

Е

Internal Circuit

Dimensions

Unless otherwise specified, the tolerances are shown below

Two, 0.7±0.1 dia.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

OMRON

Engineering Data

Forward voltage VF (V)

Light Current vs. Collector-Emitter Characteristics (Typical)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

1.2 1.4 1.6 1.8

Dark Current vs. Ambient Temperature Characteristics (Typical)

(%)

Ξ

ant

cum

Sel

60 L -20

L (%)

ŧ

5

ight

æ

Response Time vs. Load Resistance Characteristics (Typical)

(Center of

-0.5 -0.25 0 0.25 0.5 0.75 1.0

Distance d (mm)

optical axis) -+0

Response Time Measurement

Circuit

Photomicrosensor-Transmissive - EE-SX1042

OMRON

Features

- 14.5-mm-tall model with a deep slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector Collector-Emitter voltage		V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item		Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	$I_F = 30 \text{ mA}$
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 mA min., 10 mA max.	I _F = 20 mA, V _{CE} = 10 V
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0ℓ x
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 \text{ V}$
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 µs typ.	$V_{CC} = 5 \text{ V. } \text{R}_{L} = 100 \Omega, \text{ I}_{L} = 5 \text{ mA}$

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

		_	
erminal No.	Name		
	Anode		3 mm
	Cathode		3 < mr

Collector

Emitter

Unless otherwise specified, the tolerances are shown below

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Photomicrosensor-Transmissive - EE-SX1042

Engineering Data

Forward Current vs. Collector **Dissipation Temperature Rating**

Forward Current vs. Forward Voltage Characteristics (Typical)

Ta = -30°C

Ta = 70°C

Light Current vs. Forward Current Characteristics (Typical)

OMRON

Light Current vs. Collector-Emitter Characteristics (Typical)

(91)

Ŧ

÷, ime

Res

Temperature Characteristics (Typical)

0.2 0.4 0.6 0.8

20 40 60

0

Relative Light Current vs. Ambient Dark Current vs. Ambient Temperature

IF = 20 mA VCE = 5 V

80 100

F = 20 mA

V_{CE} = 10 V Ta = 25°C

Forward voltage VF (V)

Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics (Typical)

60 HO -20

Response Time Measurement

(Center of

optical axis)

Ambient temperature Ta (°C)

Circuit

-0.5 -0.25 0 0.25 0.5 0.75 1.0 Distance d (mm)

817

Features

- General-purpose model with a 5-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 160°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with a frequency of 100Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max	$I_{\rm F} = 20$ mA, $V_{\rm CE} = 10$ V
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10 \text{ V}, 0 \ \ell x$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20\ m\text{A},\ I_L=0.1\ m\text{A}$
	Peak spectral sensitivity	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 µs typ.	$V_{CC}=5$ V, $R_L=100~\Omega,~I_L=5~mA$

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Engineering Data

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Characteristics (Typical)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

0

Response Time vs. Load Resistance Sensing Position Characteristics (Typical)

20

-0.5 -0.25

Circuit I_F = 20 mA V_{CE} = 10 V Ta = 25°C

0 0.25 0.5 0.75 1.0

Distance d (mm)

Response Time Measurement

Dark Current vs. Ambient Temperature

Ambient temperature Ta (°C)

Characteristics (Typical)

10.00

D(nA)

Dark

0.001

OMRON Photomicrosensor-Transmissive – EE-SX1235A-P2

Features

OMRON

Ta = 25°C V_{CE} = 10 V

- Snap-in mounting model.
- Mounts to 1.0-, 1.2- and 1.6-mm-thick PCBs.
- High resolution with a 0.5-mm-wide aperture.
- 5-mm-wide slot.
- Connects to Tyco Electronics AMP's CT-series connectors.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note)
	Pulse forward current	I _{FP}	-
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item		Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 30 \text{ mA}$
Detector	Light current	IL.	0.6 mA min., 14 mA max.	$I_F = 20$ mA, $V_{CE} = 5$ V
	Dark current	ID	200 nA max.	$V_{CE} = 10$ V, 0 ℓ x
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 0.3 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 5 V
Rising time		tr	8 µs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 1 mA
Falling time		tf	8 µs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 1 mA

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Note: The asterisked dimension is specified by datum A only.

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
A	Anode
С	Collector
K, E	Cathode, Emitter

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Recommended Mating Connectors:

Tyco Electronics AMP 173977-3 (insulation displacement-type connector)

175778-3 (crimp-type connector)

179228-3 (crimp-type connector)

 $T_{P} = -30^{\circ}C$

Ta = 25°C

 $Ta = 70^{\circ}C$

Engineering Data

Light Current vs. Collector-Emitter Characteristics (Typical)

Relative Light Current vs. Ambient

Forward voltage V_F (V)

Temperature Characteristics (Typical)

Dark Current vs. Ambient Temperature **Characteristics (Typical)**

Response Time vs. Load Resistance Characteristics (Typical)

(g)

Ť

E

(Typical)

Sensing Position Characteristics

-0.5 -0.25 0 0.25 0.5 0.75 1.0

Distance d (mm)

I_F = 20 mA V_{CE} = 10 V Ta = 25°C

(Center of optical axis) ---0-

Response Time Measurement Circuit

Input

Photomicrosensor-Transmissive - EE-SX4009-P1

OMRON

- **Features**
- Screw-mounting model.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 5-mm-wide groove.
- Photo IC output signals directly connect with C-MOS and TTL.
- Connects to Tyco Electronics AMP's El-series connectors.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Power supply voltage		V _{CC}	10 V
Output voltage		V _{OUT}	28 V
Output current		I _{OUT}	16 mA
Permissible output dissipa	tion	Pout	250 mW (see note)
Ambient temperature	Operating	Topr	-25°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)

Item	Symbol	Value	Condition
Current consumption	I _{CC}	30 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.3 V max.	$I_{OUT} = 16 \text{ mA}$ with incident
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	V_{OUT} = V_{CC} without incident, R_{L} = 47 $k\Omega$
Response frequency	f	3 kHz min.	V_{OUT} = $V_{\text{CC},}R_{\text{L}}$ = 47 k Ω (see note)

825

Note: The value of the response frequency is measured by rotating the disk as shown below.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Dimensions	Tolerance
4 mm max.	±0.2
1 < mm ≤ 16	±0.3
16 < mm ≤ 63	±0.5

Recommended Mating Connectors:

Tyco Electronics AMP 171822-3 (crimp-type connector) 172142-3 (crimp-type connector) OMRON EE-1005 (with harness)

OMRON

Engineering Data

EE-1005 Connector

Number	Name	Model	Quantity	Maker
1	Receptacle housing	171822-3	1	Tyco Electronics AMP
2	Receptacle contact	170262-1	3	Tyco Electronics AMP
3	Lead wire	UL1007 AWG24	3	-

Wiring

Connector circuit no.	Lead wire colour	Output when connected to EE-SX4009-P1
1	Red	V _{cc}
2	Orange	GND
3	Yellow	OUT

Features

- Screw-mounting model.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 5-mm-wide groove.
- Photo IC output signals directly connect with C-MOS and TTL.
- Connects to Tyco Electronics AMP's CT-series connectors.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value	
Power supply voltage		V _{CC}	7 V	
Output voltage		V _{OUT}	28 V	
Output current		I _{OUT}	16 mA	
Permissible output dissipation		P _{OUT}	250 mW (see note)	
Ambient temperature	Operating		Topr	-20°C to 75°C
	Storage		Tstg	-40°C to 85°C
Soldering temperature		Tsol	-	

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)

Item	Symbol	Value	Condition
Current consumption	I _{CC}	30 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.3 V max.	I _{OUT} = 16 mA with incident
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	V_{OUT} = V_{CC} without incident, R_{L} = 47 $k\Omega$
Response frequency	f	3 kHz min.	V_{OUT} = $V_{\text{CC},}R_{\text{L}}$ = 47 k Ω (see note)

Note: The value of the response frequency is measured by rotating the disk as shown below.

Engineering Data

Output Allowable Dissipation vs. Ambient Temperature Characteristics

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Recommended Mating Connectors:

Tyco Electronics AMP 179228-3 (crimp-type connector) 175778-3 (crimp-type connector) 173977-3 (press-fit connector)

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Photomicrosensor-Transmissive – EE-SX3081/-SX4081 OIIROI

Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with built-in temperature compensation circuit.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- High resolution with a 0.5-mm-wide sensing aperture.
- Dark ON model (EE-SX3081)
- Light ON model (EE-SX4081.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

	Item		Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{CC}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	lout	16 mA
	Permissible output dissipation	P _{OUT}	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 10 seconds.

Photomicrosensor-Transmissive - EE-SX3081/-SX4081 OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Unless otherwise specified, the tolerances are as shown below

Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.

 The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESX4081.

Photomicrosensor-Transmissive – EE-SX3081/-SX4081 OMRON

Engineering Data

Note: The values in the parentheses apply to EE-SX4081.

Forward voltage VF (V)

LED Current vs. Ambient Temperature Characteristics (Typical)

Current Consumption vs. Supply

Ta = 25°C

Supply voltage V_{CC} (V)

= 0 mA (15 mA)

Voltage (Typical)

(mA)

00

S

con

Current o

Low-level Output Voltage vs. Output Current (Typical)

Output current I_C (mA)

Response Delay Time vs. Forward Current (Typical)

LED Current vs. Supply Voltage

FT OFF (IFT ON)

IFT ON (IFT OF

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Supply voltage Vcc (V)

100 = 51

0 mA (15 mA)

 $T_a = 25^{\circ}C$ $R_L = 1 k\Omega$

2=6

(Typical)

I FT(mA)

current

Ē

V ou(V)

put

level

MO

Distance d (mm)

Features

- Screw-mounting model.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 5-mm-wide groove.
- Photo IC output signals directly connect with C-MOS and TTL.
- Connects to US Molex connectors.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value	
Power supply voltage	Power supply voltage		V _{cc}	10 V
Output voltage		V _{OUT}	28 V	
Output current		IOUT	16 mA	
Permissible output dissipation		P _{OUT}	250 mW (see note)	
Ambient temperature	Operating		Topr	-25°C to 75°C
	Storage		Tstg	-40°C to 85°C
Soldering temperature		Tsol	-	

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)

Item	Symbol	Value	Condition
Current consumption	I _{CC}	30 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.3 V max.	$I_{OUT} = 16 \text{ mA}$ with incident
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	V_{OUT} = V_{CC} without incident, R_{L} = 47 k Ω
Response frequency	f	3 kHz min.	$V_{OUT} = V_{CC,} R_L = 47 \text{ k}\Omega$ (see note)

Note: The value of the response frequency is measured by rotating the disk as shown below.

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are shown below

OMRON

Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Recommended Mating Connectors:

US Molex

50-57-9403	
15-47-4033	
14-56-2036	(AWG28)
14-56-2034	(AWG26)
14-56-2032	(AWG24)
14-56-2037	(AWG22)

Engineering Data

Output Allowable Dissipation vs. Ambient Temperature Characteristics

Dimensions	Iolerance
4 mm max.	±0.2
4 < mm ≤ 16	±0.3
16 < mm ≤ 63	±0.5

835

Photomicrosensor-Transmissive – EE-SX4235A-P2 OMRON

Photomicrosensor-Transmissive – EE-SX4235A-P2 OMRON

Four, R0.5

175489-3

GND OUT

Vcc

(Tyco Electronics AMP)

Snap-in mounting model.

Features

- Mounts to 1.0-, 1.2- and 1.6-mm-thick panels.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 5-mm-wide slot.
- Photo IC output signals directly connect with C-MOS and TTL.
- Connects to Tyco Electronics AMP's CT-series connectors.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

	Item		Symbol	Rated value
Power supply voltage			V _{cc}	7 V
Output voltage			V _{OUT}	28 V
Output current		I _{OUT}	16 mA	
Permissible output dissipat	ion		P _{OUT}	250 mW (see note)
Ambient temperature	Operating		Topr	-25°C to 75°C
	Storage		Tstg	-40°C to 85°C
Soldering temperature			Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)

Item	Symbol	Value	Condition
Current consumption	Icc	16.5 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.35 V max.	$I_{OUT} = 16 \text{ mA}$ with incident
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	
Response frequency	f	3 kHz min.	$V_{\text{OUT}}{=}V_{\text{CC},}R_{\text{L}}{=}47~\text{k}\Omega$ (see note)

Note: The value of the response frequency is measured by rotating the disk as shown below.

(1.2) 0.5 (Aperture +5+5+

7.6±0.2

Internal Circuit

Note: The asterisked dimension is specified by datum A only.

Optica axis

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Recommended Mating Connectors:

Dimensions

Note: All units are in millimeters unless otherwise indicated.

(Apertur

Tyco Electronics AMP 179228-3 (crimp-type connector) 175778-3 (crimp-type connector) 173977-3 (press-fit connector)

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C

Engineering Data

Sensing Position Characteristics (Typical)

Recommended Mounting Holes

- When mounting the Photomicrosensor to a panel with a hole opened by pressing, make sure that the hole has no burrs. The mounting strength of the Photomicrosensor will decrease if the hole has burrs.
- When mounting the Photomicrosensor to a panel with a hole opened by pressing, be sure to mount the Photomicrosensor on the pressing side of the panel.
- The mounting strength of the Photomicrosensor will increase if the Photomicrosensor is mounted to a panel with a hole that is only a little larger than the size of the Photomicrosensor, in which case, however, it will be difficult to mount the Photomicrosensor to the panel. The mounting strength of the Photomicrosensor will decrease if the Photomicrosensor is mounted to a panel with a hole that is comparatively larger than the size of the Photomicrosensor, in which case, however, it will be easy to mount the Photomicrosensor to a panel. Other panel. When mounting the Photomicrosensor to a panel, open an appropriate hole for the Photomicrosensor according to the application.

• After mounting the Photomicrosensor to any panel, make sure that the Photomicrosensor does not wobble.

-0---

 When mounting the Photomicrosensor to a molding with a hole, make sure that the edges of the hole are sharp enough, otherwise the Photomicrosensor may fall out.

OMRON

Features

- Wide model with a 8-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	$I_F = 30 \text{ mA}$
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F=20\ m\text{A},\ V_{CE}=10\ V$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 V$
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	$V_{CC} = 5$ V. $R_L = 100\Omega$, $I_L = 5$ mA

Note: All units are in millimeters unless otherwise indicated.

Terminal No.	Name	
	Anode	3
	Cathode	3
	Collector	6

Emitter

Unless otherwise specified, the tolerances are shown below

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
δ < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Photomicrosensor-Transmissive - EE-SX1070

Engineering Data

Forward Current vs. Collector **Dissipation Temperature Rating**

Forward Current vs. Forward Voltage Characteristics (Typical)

Light Current vs. Collector-Emitter Characteristics (Typical)

Relative Light Current vs. Ambient

0.2 0.4 0.6 0.8 1

٥<u>۲</u>

 $T_{B} = -30^{\circ}C$

Ta = 70°C

Temperature Characteristics (Typical)

IF = 20 mA VCE = 5 V

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics (Typical)

Ambient temperature Ta (°C)

Response Time Measurement Circuit

1 L (%)

light

-20 0 20 40 60 80

OMRON

Distance d (mm)

Photomicrosensor-Transmissive – EE-SX3070/-SX4070 OIRON

Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- High resolution with a 0.5-mm-wide sensing aperture.
- Dark ON model (EE-SX3070)
- Light ON model (EE-SX4070)

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{CC}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	I _{OUT}	16 mA
	Permissible output dissipation	Pout	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 10 seconds.

Photomicrosensor-Transmissive - EE-SX3070/-SX4070 OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

- Note:1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.

3. The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESX4070.

Disk

Photomicrosensor-Transmissive - EE-SX3070/-SX4070 OMRON

Engineering Data

Note: The values in the parentheses apply to EE-SX4070.

Forward voltage VF (V)

LED Current vs. Ambient Temperature Characteristics (Typical)

Current Consumption vs. Supply

Ta = 25°C

Supply voltage V_{CC} (V)

0 mA (15 mA)

Voltage (Typical)

(mA)

8

S

ent con

Curr

Low-level Output Voltage vs. Output Current (Typical)

Output current I_C (mA)

Response Delay Time vs. Forward Current (Typical)

Repeat Sensing Position Characteristics (Typical)

LED Current vs. Supply Voltage

IFT OFF (IFT ON)

IFT ON (IFT OFF

Supply voltage V_{CC} (V)

= 5 \

0 mA (15 mA)

Low-level Output Voltage vs. Ambient

Temperature Characteristics (Typical)

 $Ta = 25^{\circ}C$ $R_L = 1 k\Omega$

2=8

(Typical)

I FT(mA)

current

Ē

(V)IO

>

e

put

out

evel

MO

Distance d (mm)

Ambient temperature Ta (°C)

Photomicrosensor-Transmissive – EE-SPX415-P2 OMRON

Features

- Separate LED/Photo IC combinations with 12-mm slot.
- Uses light modulation via built-in amplifier IC.
- Applicable to the PA connector series from JST (Japan Solderless Terminal).

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rated value	
Supply voltage	V _{CC}	16 VDC	
Output voltage	V _{OUT}	16 V	
Output current	I _{OUT}	50 mA	
Soldering temperature	Tsol	-40°C to 80°C	

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 12 V±10%)

Item	Symbol	Value			Unit	Testing Conditions
		EE-SV3(-B)	EE-SV3-C(S)	EE-SV3-D(S		
Current consumption	I _{cc}	-	-	35	mA	With/without object
Low level output voltage	V _{OL}	0.01	0.2	0.4	V	I _{OUT} = 20 mA without object
High level output current	I _{OH}	0	-	40	mA	V _{OUT} = 12 V with object
Ambient illumination	-	0	-	3,000	ℓx	Sunlight and fluorescent light
Response frequency	f	500	-	-	Hz	$\label{eq:Vcc0} \begin{array}{l} V_{cc}0 = V_{cc}1 = \\ V_{cc}2 = 12 \ VDC \\ RL = 1.2 \ k\Omega \\ (See note.) \end{array}$

Note: The value indicated is that measured by rotating the disk as shown below.

Note: All units are in millimeters unless otherwise indicated.

Engineering Data

Repetitive Sensing Position Characteristics for OUT1 (in horizontal direction, typical)

Repetitive Sensing Position Characteristics for OUT2 (in horizontal direction, typical)

d Output transistor OFF X direction 0.003 mm Oh ON point OFF 0.001 n ON 4.3 3.5 3.9 37 4.1 4.5 Distance (mm)

Internal Circuit

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name	
V	Power supply (Vcc)	
01	V _{OUT} 1 (Optical axis1)	
02	V _{OUT} 2 (Optical axis2)	
G	Ground (GND)	

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65
30 < mm < 50	+0.8

Photomicrosensor-Transmissive – EE-SX461-P11

OMRON

Features

- Snap-in-mounting model.
- Mounts to 0.8- to 1.6-mm-thick panels.
- With a 15-mm-wide slot.
- Photo IC output signals directly connect with C-MOS and

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Power supply voltage		V _{CC}	7 V
Output voltage		V _{OUT}	28 V
Output current		IOUT	16 mA
Permissible output dissipati	Permissible output dissipation		250 mW (see note)
Ambient temperature	Operating	Topr	-25°C to 75°C
Storage		Tstg	-40°C to 85°C
Soldering temperature		Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)

Item		Value	Condition
Current consumption	I _{CC}	35 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.3 V max.	$I_{OUT} = 16 \text{ mA}$ with incident
High-level output voltage V _{OH}		(V _{CC} x 0.9) V min.	V_{OUT} = V_{CC} without incident, R_{L} = 47 $k\Omega$
Response frequency	f	3 kHz min.	$V_{OUT} = V_{CC,} R_L = 47 \text{ k}\Omega$ (see note)

Note: The value of the response frequency is measured by rotating the disk as shown below.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name		
V	Power supply (Vcc)		
0	Output (OUT)		
G Ground (GND)			
Recommended Mating Connectors:			

Tyco Electronics AMP 171822-3 (crimp-type connector) 172142-3 (crimp-type connector) OMRON EE-1005 (with harness)

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Engineering Data

(MM)

PC D

dissipation

able

allow

Output:

EE-1005 Connector

Number	Name	Model	Quantity	Maker
1	Receptacle housing	171822-3	1	Tyco Electronics AMP
2	Receptacle contact	170262-1	3	Tyco Electronics AMP
3	Lead wire	UL1007 AWG24	3	-

Wiring

Connector circuit no.	Lead wire colour	Output when connected to EE-SX461-P11
1	Red	V _{CC}
2	Orange	GND
3	Yellow	OUT

Recommended Mounting Hole Dimensions and Mounting and **Dismounting Method**

The Photomicrosensor can be mounted to 0.8- to 1.6-mm-thick panels.

Refer to the above mounting hole dimensions and open the mounting holes in the panel to which the Photomicrosensor will be mounted.

Insert into the holes the Photomicrosensor's mounting portions with a force of three to five kilograms but do not press in the Photomicrosensor at one time. The Photomicrosensor can be easily mounted by inserting the mounting portions halfway and then slowly pressing the Photomicrosensor onto the panel.

There are two ways to dismount the Photomicrosensor. Refer to the following.

Dismounting with Screwdriver

Press the mounting hooks of the Photomicrosensor with a flatblade screwdriver as shown in the following illustration and pull up the Photomicrosensor

Dismounting by Hand

Squeeze the mounting tabs as shown in the following illustration and press the mounting tabs upwards.

Pressed mounting holes are ideal for mounting the Photomicrosensor. When mounting the Photomicrosensor to a panel that has pressed mounting holes for the Photomicrosensor, be sure to mount the Photomicrosensor on the pressing side of the panel, otherwise it may be difficult to mount the Photomicrosensor and an insertion force of five to six kilograms may be required.

When mounting the Photomicrosensor to a panel that has mounting holes opened by pressing, make sure that the mounting holes have no burrs, otherwise the lock mechanism of the Photomicrosensor will not work perfectly. After mounting the Photomicrosensor to a panel, be sure to check if the lock mechanism is working perfectly.

Photomicrosensor-Transmissive – EE-SPX414-P1

OMRON

Features

- Wide-width transmissive sensor with 17-mm slot.
- Uses light modulation via built-in amplifier IC.
- Applicable to the PH connector series from JST (Japan Solderless Terminal).

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rated value	
Supply voltage	V _{cc}	16 VDC	
Output voltage	V _{OUT}	16 V	
Output current	I _{OUT}	50 mA	
Operating temperature	Topr	-10°C to 60°C	
Storage temperature	Tstg	-40°C to 80°C	

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 12)

Item	Symbol	Limits			Unit	Testing Conditions
		MIN.	TYP.	MAX.	1	
Current consumption	I _{CC}	-	-	20	mA	With/without object
Low level output voltage	V _{OL}	0.01	0.2	0.4	V	I _{OUT} = 20 mA without object
High level output current	Іон	0	-	40	mA	V _{OUT} = 12 V with object
Response frequency	f	500	-	-	Hz	$V_{CC}0 = V_{CC} =$ 12 VDC RL = 1.2 k Ω (See note.)

Note: The value indicated is that measured by rotating the disk as shown below.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Recommended Mating Connectors:

JST (Japan Solderless Terminal) PHR-3

03CR-6H 03KR-8M 03KR-6S

Dimensions	Tolerance	
3 mm max.	±0.2	
3 < mm ≤ 16	±0.3	
6 < mm ≤ 63	±0.5	

Engineering Data

OFF point ON 3.6 3.8 4.0 4.2 4.4 Distance (mm)

Repetitive Sensing Position Characteristics (in vertical direction, typical)

OMRON

Features

- An actuator can be attached.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	250°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item		Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	$I_F = 30 \text{ mA}$
	Reverse current	IR	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	I_F = 20 mA, I_L = 0.1 μ A
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CF} = 10 V$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

IF (mA)

Forward current

.40

-20 0

Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient **Temperature Characteristics** (Typical)

Response Time Measurement Circuit

- Note: 1. Make sure that the portions marked with dotted lines have no burrs.
 - 2. The material of the actuator must be selected by considering the infrared permeability of the actuator.

Note: All units are in millimeters unless otherwise indicated.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Unless otherwise specified, the tolerances are ±0.2 mm.

Engineering Data Forward Current vs. Collector **Dissipation Temperature Rating**

Forward Current vs. Forward Voltage Characteristics (Typical)

(%)

_

current

light

0

Sals

(%)

_

t

light

0

Rels

13.7+0. 17+0.2

12 14 16 18 Forward voltage VF (V)

IF = 20 mA VCF = 5 V

Light Current vs. Collector-Emitter Relative Light Current vs. Ambient Temperature Characteristics (Typical)

20

Voltage Characteristics (Typical)

Ambient temperature Ta (°C)

40

Collector-Emitter voltage V_{CE} (V)

Response Time vs. Load Resistance Characteristics (Typical)

Actuator Dimensions

2.5±0.2 dia

٠

1.6-0 1 dia.

(Typical) I_F = 20 mA V_{CE} = 10 V Ta = 25°C

-20

60 40

Sensing Position Characteristics

20 Ambient temperature Ta (°C)

-0.5 -0.25 0 0.25 0.5 0.75 1.0

Distance d (mm)

40 60

(Center of

optical axis)

Note: All units are in millimeters unless otherwise indicated.

Dimensions

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Features

- An actuator can be attached.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 m typ.	I _F = 20 mA
Detector	Light current	I _L	0.5 μA min., 14 μA max.	I_F = 20 mA, V_{CE} = 10 V
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE}=10~V,~0~\ell x$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20~mA,~I_L=0.1~\mu A$
	Peak spectral sensitivity wavelength	λ_{P}	850 nm typ.	$V_{CF} = 10 V$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

Engineering Data

Relative Light Current vs. Ambi-

ent Temperature Characteristics

(Typical)

120

(%)

_ Ħ

cun light

Rel

60 40

.20

Forward voltage V_F (V)

40 60 80

Ambient temperature Ta (°C)

-0.5 -0.25 0 0.25 0.5 0.75 1.0

Distance d (mm)

20

Sensing Position Characteristics

F = 20 mA

IF = 20 mA V_{CE} = 10 V Ta = 25°C

(Center of

optical axis)

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

(mA) _ ant cum ight.

Light Current vs. Forward Current

Characteristics (Typical)

Forward current IF (mA)

Dark Current vs. Ambient **Temperature Characteristics**

Ambient temperature Ta (°C)

Response Time Measurement

- Note: Make sure that the por-1 tions marked with dotted lines have no burrs.
 - 2. The material of the actuator must be selected by considering the infrared permeability of the actuator.

Features

- An actuator can be attached.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	$I_F = 30 \text{ mA}$
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 m typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F = 20$ mA, $V_{CE} = 10$ V
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 (x
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20\ mA,\ I_L=0.1\ mA$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CF} = 10 V$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.	Name
	Anode
	Cathode
	Collector
	Emitter

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Engineering Data

Forward Current vs. Collector **Dissipation Temperature Rating** Forward Current vs. Forward Voltage Characteristics (Typical)

Light Current vs. Forward Current Characteristics (Typical)

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

60 40 -20 0 Collector-Emitter voltage V_{CE} (V) Ambient temperature Ta (°C)

Response Time vs. Load Resis-**Sensing Position Characteristics** tance Characteristics (Typical) (Typical)

(%)

2

ent

cum

Relative light

(Typical)

(%)

_

ent

LINC

ve light

Sal

Actuator Dimensions

-0.5 -0.25 0

Relative Light Current vs. Ambi-Dark Current vs. Ambient ent Temperature Characteristics **Temperature Characteristics**

IF = 20 mA VCF = 5 V

IF = 20 mA VCE = 10 V Ta = 25°C

ТП

(Center of

optical axis)

0.25 0.5 0.75 1.0

Distance d (mm)

20 40 80 80 100

Ambient temperature Ta (°C)

Response Time Measurement Circuit

863
Photomicrosensor (Actuator Mounted) - EE-SA107-P2 OIRON

Features

- An actuator can be attached.
- Snap-in mounting model.
- Mountable to 1.0, 1.2 and 1.6 mm thick boards.
- Connects to Tyco Electronics AMP's CT series connectors.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note)
	Pulse forward current	I _{FP}	-
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{CEO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature	Soldering temperature		-

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	V _R = 4 V
	Peak emission wavelength	λρ	940 nm typ.	I _F = 30 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	I _F = 20 mA, V _{CE} = 5 V
	Dark current	ID	200 nA max.	V _{CE} = 10 V, 0 <i>l</i> x
	Leakage current	ILEAK		
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	I _F = 20 mA, I _L = 0.3 mA
	Peak spectral sensitivity wavelength	λρ	850 nm typ.	V _{CE} = 5 V
Rising time	0	tr	8 μs typ.	V _{CC} = 5 V, R _L = 100 Ω, I _L = 1 mA
Falling time)	tf	8 μs typ.	V _{CC} = 5 V, R _L = 100 Ω, I _L = 1 mA

Photomicrosensor (Actuator Mounted) - EE-SA107-P2 OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Note: The asterisked dimension is specified by datum A only.

Unless otherwise specified, the tolerances are as shown below.

±0.3

±0.375 ±0.45

±0.55

±0.65

Tolerence

Dimensions

3 mm max.

3 < mm ≤ 6

6 < mm ≤ 10 10 < mm ≤ 18

18 < mm ≤ 30

Terminal No.	Name
A	Anode
С	Collector
K, E	Cathode, Emitter

Recommended Mating Connectors:

Tyco Elctronics AMP 173977-3 (insulation displacement - type connector) 175778-3 (crimp-type connector) 179228-3 (crimp-type connector)

Photomicrosensor (Actuator Mounted) - EE-SA107-P2 OMRON

Engineering Data

1.2 1.4 1.6 1.8 Forward voltage V_F (V) Relative Light Current vs. Ambient Temperature Characteristics (Typical)

0.4 0.6 0.8

Ambient temperature Ta (°C)

1 L (%)

t

ight

Φ

Sel

Sensing Position Characteristics (Typical)

Light Current vs. Forward Current

Forward current I_F (mA)

10 20 30 40 50 60 70 80 9

Innet

Vcc

Output

GND

Ambient temperature Ta (°C)

Dark Current vs. Ambient

.00 .10 0

Response Time Measurement

Temperature Characteristics

Ta = 25°C

VCE = 10 V

Characteristics (Typical)

IL (mA)

ť

Inc

ght

(Typical)

ď

Distance d (mm)

-0.5 -0.25

Note: 1. Make sure that the portions marked with dotted lines have no burrs.

2. The material of the actuator must be selected by considering the infrared permeability of the actuator.

Features

- An actuator can be attached.
- Snap-in mounting model.
- Mounts to 1.0-, 1.2- and 1.6-mm-thick panels.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 3.6-mm-wide slot.
- Photo IC output signals directly connect with logic circuit and TTL.
- Connects to Tyco Electronics AMP's CT-series connectors.

Specifications -

Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Power supply voltage		V _{CC}	7 V
Output voltage		V _{OUT}	28 V
Output current		I _{OUT}	16 mA
Permissable output dissipat	Permissable output dissipation		250 mW (see note)
Ambient temperature	Operating	Topr	-20°C to 75°C
Storage		Tstg	-40°C to 85°C
Soldering temperature		Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

■ Electrical and Optical Characteristics (Ta = 25°C, V_{CC} = 5 V ±10%)

Item	Symbol	Value	Condition
Current consumption	Icc	30 mA max.	With and without incident
Low-level output voltage	VOL	0.35 V max.	I _{OUT} = 16 mA with incident
High-level output voltage	VOH	(V _{CC} x 0.9) V min.	$V_{OUT} = V_{CC}$ without incident, $R_L = 47 \text{ k}\Omega$
Response frequency	f	3 kHz min.	$V_{OUT} = V_{CC}$, $R_L = 47 \text{ k}\Omega$ (see note)

Note: The value of the response frequency is measured by

Photomicrosensor (Actuator Mounted) - EE-SA407-P2 OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Note: The asterisked dimension is specified by datum A only.

Unless otherwise specified, the tolerances are as shown below.

±0.3

±0.375

±0.45

+0.55

±0.65

Tolerence

		Dimensions
		3 mm max.
Terminal No.	Name	3 < mm ≤ 6
V	Power Supply (V _{CC})	6 < mm ≤ 10
0	Output (OUT)	10 < mm ≤ 18
G	Ground(GND)	18 < mm ≤ 30

Recommended Mating Connectors:

Tyco Elctronics AMP 179228-3 (insulation displacement - type connector) 175778-3 (crimp-type connector) 173977-3 (crimp-type connector) Photomicrosensor (Actuator Mounted) - EE-SA407-P2 OMRON

Engineering Data

Sensing Position Characteristics

Recommended Mounting Holes

- When mounting the Photomicrosensor to a panel with a hole opened by pressing, make sure that the hole has no burrs. The mounting strength of the Photomicrosensor will decrease if the hole has burrs.
- When mounting the Photomicrosensor to a panel with a hole opened by pressing, be sure to mount the Photomicrosensor on the pressing side of the panel.
- The mounting strength of the Photomicrosensor will increase if the Photomicrosensor is mounted to a panel with a hole that is only a little larger than the size of the Photomicrosensor, in which case, however, it will be difficult to mount the Photomicrosensor to the panel. The mounting strength of the Photomicrosensor will

Actuator Dimensions

decrease if the Photomicrosensor is mounted to a panel with a hole that is comparatively larger than the size of the Photomicrosensor, in which case, however, it will be easy to mount the Photomicrosensor to the panel. When mounting the Photomicrosensor to a panel, open an appropriate hole for the Photomicrosensor according to the application.

- After mounting the Photomicrosensor to any panel, make sure that the Photomicrosensor does not wobble.
- When mounting the Photomicrosensor to a molding with a hole, make sure that the edges of the hole are sharp enough, otherwise the Photomicrosensor may come fall out.

Note:	1.	Make sure that the portions				
		marked	with	dotted	lines	
		have no	burrs.			

 The material of the actuator must be selected by considering the infrared permeability of the actuator. Ultra-compact model.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	75 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 4 \text{ mA}$
Detector	Light current	IL.	50 μA min., 300 μA max.	$ I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V} \\ Aluminum-deposited surface, \\ d = 1 \text{ mm} (see note 1) $
	Dark current	ID	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	200 nA max.	$I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V}$ with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	930 nm typ.	$V_{CF} = 10 \text{ V}$
Rising time		tr	35 µs typ.	$V_{CC} = 2 \text{ V}, \text{R}_{\text{L}} = 1 \text{k}\Omega, \text{I}_{\text{L}} = 100 \mu\text{A}$
Falling time		tf	25 µs typ.	V_{CC} = 2 V, R_L = 1 k\Omega, I_L = 100 μA

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Unless otherwise specified, the tolerances are ± 0.15 mm.

Light Current vs. Collector-Emitter

IF=15 m/

IF=10 mA

IF=7 mA

IF=4 mA

IF=2 mA

6

Response Time vs. Load Resistance

Characteristics (Typical)

Relative Light Current vs.

Card Moving Distance (1)

White Black

0 1 2 3 4 5 6

+- 1-0 -

IF = 4 mA

VCE = 2 V

d = 1 mm

Ta = 25°C

Collector-Emitter voltage V_{CE} (V)

10

-470 0

Voltage Characteristics (Typical)

a = 25°C = 1 mm ensing object uminum-decr

Engineering Data

Ambient Temperature

120

(%)

_

0

Rel

-26

Characteristics (Typical)

Dark Current vs. Ambient

(Typical)

10

10

10

10

Input

(M)

_

VCE = 20 V

Relative Collector Current vs. Card Moving Distance (2)

(MI) _ ť cur ight

Light Current vs. Forward Current

Forward current I_F (mA)

Temperature Characteristics

Ambient temperature Ta (°C)

Sensing Distance Characteristics (Typical)

Response Time Measurement Circuit

--¢.

≤ R.

Features

- Ultra-compact model.
- PCB surface mounting type.

OMRON

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	IF	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	75 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.4 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	950 nm typ.	$I_F = 4 \text{ mA}$
Detector	Light current	IL	50 μA min., 300 μA max.	$\label{eq:IF} \begin{array}{l} I_{\text{F}} = 4 \text{ mA}, \ V_{\text{CE}} = 2 \ V \\ Aluminum-deposited \ surface, \\ d = 1 \ \text{mm} \ (\text{see note 1}) \end{array}$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	200 nA max.	$I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V}$ with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λρ	930 nm typ.	V _{CF} = 10 V
Rising time		tr	35 µs typ.	$V_{CC}=2~V,~R_L=1~k\Omega,~I_L=100~\mu A$
Falling time		tf	25 µs typ.	V_{CC} = 2 V, R_L = 1 k\Omega, I_L = 100 μA

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

ent Inc Light

Distance d (mm)

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Unless otherwise specified, the tolerances are ±0.15 mm

Engineering Data

(mA)

ш.

current

vard

(%)

_

current

light

e Relativ

-40

Relative Light Current vs.

Characteristics (Typical)

Ambient Temperature

Forward Current vs. Collector Dissipation Temperature Rating Light Current vs. Forward Current Characteristics (Typical)

E

ICEO

Current

Dark

(M)

current

Light

Circuit

- 60

(Typical)

20 25 10 15 Forward current I_F (mA) Dark Current vs. Ambient

Temperature Characteristics (Typical)

Response Time vs. Load Resistance

Characteristics (Typical)

Relative Collector Current vs. Card Moving Distance (2)

Sensing object:

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Ambient temperature Ta (°C)

 $T_A = 25^{\circ}C$ $I_C = 4 \text{ mA}$

V_{CE} = 2 V d = 1 mm

surface

Distance d (mm)

Response Time Measurement

Sensing object

Aluminum-deposite

Sensing Distance Characteristics

TAu25°C RL=47 kΩ (Ins) RL=1 kΩ Ŧ e 5 a_=470 Ω RL=100 Ω ž 80 100 120 140 160 180 200 220

Light current IL (µA)

Card Moving Distance (1)

Features

- Ultra-compact model.
- PCB surface mounting type.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter Forward current Is		l _F	25 mA (see note 1)
	Pulse foward current	I _{FP}	100 mA (see note 2)
	Reverse Voltage	V _R	6 V
Detector	Collector-Emitter voltage	V _{CEO}	18 V
	Emitter-Collector voltage	V _{ECO}	4 V
	Collector current	Ic	20 mA
	Collector dissipation	P _C	75 mW (see note 1)
Ambient temperature	Operating	Topr	-30°C to 80°C
	Storage	Tstg	-40°C to 85°C
	Reflow soldering	Tsol	220°C (see note 3)
	Manual soldering	Tsol	300°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Duty: 1/100; Pulse width: 0.1 ms.

3. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.1 V typ., 1.3 V max.	I _F = 4 mA
	Reverse current	IR	10 µA max.	V _R = 6 V
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	I _L	100 μA min., 150 μA typ., 360 μA max.	Aluminum-deposited surface, I _F = 4 mA, V _{CE} = 2 V, d = 1 mm (see note 1)
	Dark current	ID	100 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	1 μA max.	$I_F=4\ mA,\ V_{CE}=2\ V$
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	900 nm typ.	-
Rising time		tr	25 μs typ.	V_{CC} = 2 V, R_L = 1 k Ω
Falling time		tf	30 µs typ.	V_{CC} = 2 V, R_L = 1 k Ω

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Recommended soldering patterns

Unless otherwise specified, the tolerances are $\pm 0.2 \mbox{ mm}.$

	Terminal No.	Name
Ŀ	A	Anode
	K	Cathode
	С	Collector
	E	Emitter

Engineering Data

Voltage Characteristics (Typical) Ta = 25°C

0.5

Dark Current vs. Ambient Temper-

ature Characteristics (Typical)

(NA)

'n

curr

Dark

10

0.1

-40 -20

Characteristics (Typical)

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resis-

tance Characteristics (Typical)

Load resistance RL (kΩ)

Vcc

Outout

Response Time Measurement

 $\Rightarrow = \zeta$

≶ R.

Response time tr, tf (µs)

10

Circuit

Input Output

> Input

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

.

Forward voltage V_F (V)

0.2 0.4 0.6 0.8

Sensing Distance Characteristics (Typical)

Sensing Position Characteristics (Typical)

20

Ambient temperature Ta (°C)

60 80

Light Current vs. Forward Current

Tape

Tape configuration

+ - 0.2±0.05

· · (1.15)

Tape quantity

3,000 pcs./reel

Photomicrosensor-Reflective - EE-SY193

OMRON

Tape and Reel

Unit: mm (inch).

Reel

Precautions -

Soldering Information

Reflow soldering

- The following soldering paste is recommended:
 - Melting temperature: 178 to 192°C
 - Composition: Sn 63%, Pb 37%
- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25W, and keep the temperature of the iron tip at 300°C or below.
- Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 10 to 30°C

Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

Features

■ 3 mm tall, thin model.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter Forward current IF		l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 85°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature	Soldering temperature		260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	50 μA min., 500 μA max.	$\label{eq:lF} \begin{array}{l} I_{F}=20 \text{ mA}, \ V_{CE}=10 \text{ V} \\ \text{White paper with a relection ratio} \\ \text{of 90\%, d}=3.5 \text{ mm} \ (\text{see note}) \end{array}$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	2 µA max.	$I_F = 20$ mA, $V_{CE} = 10$ V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λρ	850 nm typ.	V _{CC} = 10 V
Rising time		tr	30 µs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 1 mA
Falling time		tf	30 µs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 1 mA

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

OMROI

Note: All units are in millimeters unless otherwise indicated.

883

Internal Circuit

Unless otherwise specified	, the	tolerances	are	as	shown	below.
----------------------------	-------	------------	-----	----	-------	--------

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

(MM)

0

5

(M) 40

_

current

ight

(NA)

0

Ħ

CUIT

Dark

(%)

4

current

light (

Relative

350

300 90%

250

200

Engineering Data

(mA)

ш

current

-onward

(%)

_ current

light

g Relativ

0 ----

(Typical)

Forward Current vs. Collector **Dissipation Temperature Rating**

60

I_F = 20 mA V_{CE} = 5 V

Ambient temperature Ta (°C)

Relative Light Current vs.

Characteristics (Typical)

Ambient Temperature

Ta = 25°C V_{CE} = 10 V d = 3.5 mm

Sensing object

White paper with a reflection factor of

Dark Current vs. Ambient

Temperature Characteristics

OMRON

26 20 26 40

Forward current I_F (mA)

Sensing Position Characteristics (Typical)

Ambient temperature Ta (°C)

Sensing Distance Characteristics

Response Time Measurement Circuit

Ambient temperature Ta (°C)

I_F = 20 mA V_{CE} = 10 V Ta = 25°C Sensing object: White paper with a reflection factor of 90% $d_4 = 3 mr$ ----= 5 mm -2.5 3.5

Distance d₂ (mm)

Response Time vs. Load **Resistance Characteristics**

Load resistance R_L (kΩ)

Sensing Angle Characteristics (Typical)

(%)

_

Ħ

B

light

e

å

884

(Typical)

Photomicrosensor-Reflective - EE-SY169B

OMRON

Features

- High-quality model with plastic lenses.
- Highly precise sensing range with a tolerance
- of ±0.6 mm horizontally and vertically. ■ Limited reflective model Red LED.
- Red LED.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value	
Emitter Forward current I		IF	40 mA (see note 1)	
	Pulse foward current	I _{FP}	300 mA (see note 2)	
	Reverse Voltage	V _R	3 V	
Detector	Collector-Emitter voltage	V _{CEO}	30 V	
	Emitter-Collector voltage	V _{ECO}	-	
	Collector current	Ic	20 mA	
	Collector dissipation	Pc	100 mW (see note 1)	
Ambient temperature	Operating	Topr	0°C to 70°C	
	Storage	Tstg	-20°C to 80°C	
Soldering temperature		Tsol	260°C (see note 3)	

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

The pulse width is 10 µs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter Forward voltage V		V _F	1.85 V typ., 2.3 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 3 V$
	Peak emission wavelength	λ _P	660 nm typ.	I _F = 20 mA
Detector	Light current	IL	16 μA min., 2,000 μA max.	$\label{eq:l_F} \begin{array}{l} I_{F} = 20 \text{ mA}, \ V_{CE} = 5 \text{ V} \\ \text{White paper with a reflection ratio} \\ \text{of 90\%, d} = 4 \text{ mm (see note)} \end{array}$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 5 V, 0 \ell x$
	Leakage current	I _{LEAK}	2 µA max.	$I_F = 10$ mA, $V_{CE} = 10$ V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CC} = 5 V$
Rising time		tr	30 µs typ.	$V_{CC}=5~V,~R_L=1~k\Omega,~I_L=1~mA$
Falling time		tf	30 µs typ.	$V_{CC}=5 \text{ V}, \text{R}_{\text{L}}=1 \text{k}\Omega, \text{I}_{\text{L}}=1 \text{m}\text{A}$

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Note: These dimensions are for the surface A. Other lead wire pitch dimensions are for the case surface.

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

(M)

-

current

Engineering Data

Light Current vs. Forward Current

- d = 4 mm

V_{CE} = 5 V

Characteristics (Typical)

(Typical)

Collector-Emitter voltage V_{CE} (V) Response Time vs. Load **Resistance Characteristics** (Typical)

Load resistance RL (kΩ)

Sensing Position Characteristics (Typical)

Distance d₂ (mm) **Response Time Measurement** Circuit

Photomicrosensor (Reflective) - EE-SY113

Features

Compact reflective Photomicrosensor (EE-SY110) with a moulded housing and dust-tight cover.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter Forward current		IF	50 mA (see note 1)
	Pulse forward current		1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
Collector current		I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Ambient temperature Operating		-40°C to 80°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 us maximum with a frequency of 100Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	V _R = 4 V
	Peak emission wavelength	λρ	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	160 μA min., 1,600 μA max.	I _F = 20 mA, V _{CE} = 10 V White paper with a reflection ratio of 90%, d = 4.4 mm (see note)
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	2 μA max.	I _F = 20 mA, V _{CE} = 10 V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)		
	Peak spectral sensitivity wavelength	λp	850 nm typ.	V _{CE} = 10 V
Rising time	r	tr	30 μs typ.	$V_{CC} = 5 V, R_L = 1 k\Omega, I_L = 1 mA$
Falling time	9	tf	30 μs typ.	$V_{CC} = 5 V, R_L = 1 k\Omega, I_L = 1 mA$

Note: The letter "d" indicates the distance between the top surface of the sensor and the sensing object.

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise spec	ified, the	tolerances	are as	shown	below

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Engineering Data

Relative Light Current vs.

Characteristics (Typical)

Ambient Temperature

F (mA)

current

Forward

1 (%)

current

light

Relative

(Typical)

Forward Current vs. Collector **Dissipation Temperature Rating**

(MM) (Å 2 t E I Light 8 -20 20 40 Ambient temperature Ta (°C)

IF = 20 mA VCE = 5 V

40 Ambient temperature Ta (°C)

Sensing Distance Characteristics

Light Current vs. Forward Current Characteristics (Typical)

Sensing object: White pape

with a reflection factor of 90%

Forward current I_F (mA)

V_{CE} = 10 V d = 4.4 mm

Dark Current vs. Ambient

(Typical)

(An) d

current

Dark

Temperature Characteristics

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

OMRON

Sensing Position Characteristics (Typical)

Response Time Measurement Circuit

I_F = 20 mA V_{CE} = 10 V Ta = 25°C 1 L (%) $d_1 = 4.4 \text{ mm}$ Sensing object: current White paper with a reflection factor of 90% light Relative 20 Distance d₂ (mm)

Angle deviation θ (°)

Sensing Angle Characteristics (Typical)

OMRON

Photomicrosensor-Reflective – EE-SY313/314

OMRON

Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- Compact reflective Photomicrosensor (EE-SY310/-SY410) with a molded housing and a dust-tight cover.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- Dark ON model (EE-SY313)
- Light ON model (EE-SY413)

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter Forward current		l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{cc}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	I _{OUT}	16 mA
	Permissible output dissipation	Pout	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 65°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Photomicrosensor-Reflective - EE-SY313/314

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	920 nm typ.	$I_F = 20 \text{ mA}$
	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	$ \begin{array}{l} V_{CC} = 4.5 \text{ to } 16 \text{ V}, I_{OL} = 16 \text{ mA}, \\ \text{without incident light (EE-SY313),} \\ \text{with incident light (EE-SY413) (see} \\ \text{notes } 1 \ \& \ 2) \end{array} $
	High-level output voltage	I _{OH}	15 V min.	$ \begin{array}{l} V_{CC} = 16 \mbox{ V, } R_L = 1 \mbox{ k}\Omega, \mbox{ with } \\ \mbox{incident light (EE-SY313), without } \\ \mbox{incident light (EE-SY413) (see } \\ \mbox{notes } 1 \mbox{ \& } 2) \end{array} $
	Current consumption	I _{CC}	3.2 mA typ., 10 mA max.	$V_{CC} = 16 V$
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	V _{CC} = 4.5 to 16 V
LED current	when output is OFF	IFT	10 mA typ., 20 mA max.	$V_{CC} = 4.5$ to 16 V
LED current when output is ON				
Hysteresis		ΔH	17% typ.	V _{CC} = 4.5 to 16 V
Response frequency		f	50 Hz min.	V_{CC} = 4.5 to 16 V, I_{F} = 20 mA, I_{OL} = 16mA
Response de	Response delay time		3 µs min.	$V_{\rm CC}$ = 4.5 to 16 V, $I_{\rm F}$ = 20 mA, $I_{\rm OL}$ = 16mA
Response de	Response delay time		20 µs typ.	V_{CC} = 4.5 to 16 V, I_{F} = 20 mA, I_{OL} = 16mA

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are as shown right.

Photomicrosensor-Reflective - EE-SY313/314

Terminal No.	Name
A	Anode
К	Cathode
V	Power supply V _{CC}
0	Output (OUT)
G	Ground (GND)

Dimensions	Tolerence
mm max.	±0.3
8 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
0 < mm ≤ 18	±0.55
8 < mm ≤ 30	±0.65

- Note: 1. "With incident light" denotes the condition whereby the light reflected by white paper with a reflection factor of 90% at a sensing distance of 4.4 mm is received by the photo IC when the forward current (I_F) of the LED is 20 mA.
 - 2. Sensing object: White paper with a reflection factor of 90% at a sensing distance of 4.4 mm.
 - 3. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC is turned from ON to OFF and when the photo IC is turned from OFF to ON.

4. The value of the response frequency is measured by rotating the disk as shown below.

5. The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESY413.

IF (mA)

current |

P

-ODW

Engineering Data

Note: The values in parentheses apply to EE-SY413.

Temperature Characteristics

OFF (IFT ON)

IFT ON (IFT OFF)

.20

1

(Typical)

IFT (mA)

current

LED

Output Current (Typical)

Current Consumption vs. Supply Voltage (Typical)

20

Low-level Output Voltage vs. Ta = 25°C

Response Delay Time vs. Forward Current (Typical)

 $V_{CC} = 5 V$ R₁ = 330 Ω 25°C (EE-SX3CICI) VOUT (EE-SX4CICI) tені (tрі н ter u (tour 15 20 25 30

Distance d1 (mm)

OMRON

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical) Vol(V)

= 5 V

0 mA (20 mA

time delay Se

(Ins)

. t PLH

Ŧ

å

Forward current I_F (mA)

(Typical)

Features

- Dust-tight construction.
- With a visible-light intercepting filter which allows objects to be sensed without being greatly influenced by the light radiated from fluorescent lamps.
- Mounted with M2 screws.
- Model with soldering terminals (EE-SF5).
- Model with PCB terminals (EE-SF5-B).

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
Pulse forward current		I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature Operating		Topr	-25°C to 80°C
	Storage	Tstg	-30°C to 80°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with a frequency of 100Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	ltem	Symbol	Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	V _R = 4 V
	Peak emission wavelength	λp	940 nm typ.	I _F = 20 mA
Detector	Light current	۱ _L	200 μA min., 2,000 μA max.	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$ White paper with a reflection ratio of 90%, d = 5 mm (see note)
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	ILEAK	2 μA max.	I _F = 20 mA, V _{CE} = 10 V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)		i i i i i i i i i i i i i i i i i i i
	Peak spectral sensitivity wavelength	λρ	850 nm typ.	V _{CE} = 10 V
Rising time		tr	30 µs typ.	$V_{CC} = 5 V, R_L = 1 k\Omega, I_L = 1 mA$
Falling time		tf	30 μs typ.	$V_{CC} = 5 V, R_L = 1 k\Omega, I_L = 1 mA$

Note: The letter "d" indicates the distance between the top surface of the sensor and the sensing object.

OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter
-	2

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Engineering Data

Ta = 25°C V_{CE} = 10 V

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ta = 25°0

c = 20 mA

VCE = 10 V

aper with a reflection actor of 90% d = 5 mm

10 20

Angle deviation θ (°)

Distance d (mm)

Sensing Angle Characteristics

Sensing object: White paper with a reflection factor of 90%

TIT

(Typical)

3.00

(Typical)

light

Relative I

(HI) (IN)

ent

Inc

ight

Forward current I_F (mA)

Dark Current vs. Ambient **Temperature Characteristics** (Typical)

Ambient temperature Ta (°C)

Sensing Position Characteristics (Typical)

Sensing Angle Characteristics

Collector-Emitter voltage V_{CE} (V)

Response Time vs. Load **Resistance Characteristics** (Typical)

Load resistance RL (kQ)

Sensing Position Characteristics (Typical)

Distance d₂ (mm) **Response Time Measurement** Circuit

2 831

Specifications -

Features

housina.

Absolute Maximum Ratings (Ta = 25°C)

Compact reflective model with a moulded

Item		Symbol	Rated value
Emitter Forward current		l _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector Collector-Emitter voltage		V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
Collector current		I _C	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 85°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with a frequency of 100Hz.

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	V _R = 4 V
	Peak emission wavelength	λp	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	200 μA min., 2,000 μA max.	I_F = 20 mA, V_{CE} = 10 V White paper with a reflection ratio of 90%, d = 5 mm (see note)
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	ILEAK	2 μA max.	I _F = 20 mA, V _{CE} = 10 V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)		
	Peak spectral sensitivity wavelength	λρ	850 nm typ.	V _{CE} = 10 V
Rising time	1. 1	tr	30 µs typ.	$V_{CC} = 5 V, R_L = 1 k\Omega, I_L = 1 mA$
Falling time	3	tf	30 μs typ.	$V_{CC} = 5 V, R_L = 1 k\Omega, I_L = 1 mA$

Note: The letter "d" indicates the distance between the top surface of the sensor and the sensing object.

Note: All units are in millimeters unless otherwise indicated.

899

Internal Circuit

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerence
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

(MM)

Pc

٩.

t

7

oht

(Pu) (ID)

current

Hr.

ĉ

curr

light

Relative

Engineering Data

IF (mA)

Forward current

11 (%)

current

light

Relative

40 .20

(Typical)

Forward Current vs. Collector **Dissipation Temperature Rating**

Ambient temperature Ta (°C)

IF = 20 mA VCE = 5 V

40

Ambient temperature Ta (°C)

Sensing Distance Characteristics

Relative Light Current vs.

Characteristics (Typical)

Ambient Temperature

Light Current vs. Forward Current Characteristics (Typical)

d = 5 mm

VCE -

Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Forward current I_F (mA)

Dark Current vs. Ambient

Temperature Characteristics

Ambient temperature Ta (°C)

Directio da

Sensing Position Characteristics (Typical)

factor of 90%

2.0 3.0 4.0 5.0 6.0

Distance d₂ (mm)

Response Time Measurement Circuit

OMRON

Load resistance R_L (kΩ)

Photomicrosensor-Reflective – EE-SY310/410

OMRON

Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- Compact reflective model with a molded housing.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- Dark ON model (EE-SY310)
- Light ON model (EE-SY410)

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter Forward current		I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector Power supply voltage		V _{CC}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	I _{OUT}	16 mA
Permissible output dissipation		Pout	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25° C.

2. The pulse width is 10 μs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

Photomicrosensor-Reflective - EE-SY310/410

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter Forward voltage V		V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	920 nm typ.	$I_F = 20 \text{ mA}$
	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5 \text{ to } 16 \text{ V}, I_{OL} = 16 \text{ mA}, \\ \text{without incident light (EE-SY310)}, \\ \text{with incident light (EE-SY410) (see \\ notes 1 \& 2) \end{array}$
	High-level output voltage	V _{OH}	15 V min.	V_{CC} = 16 V, R_L = 1 k $\Omega,$ with incident light (EE-SY310), without incident light (EE-SY410) (see notes 1 & 2)
	Current consumption	I _{cc}	3.2 mA typ., 10 mA max.	V _{CC} = 16 V
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	V _{CC} = 4.5 to 16 V
LED current v	when output is OFF	IFT	6 mA typ., 15 mA max.	$V_{CC} = 4.5$ to 16 V
LED current when output is ON				
Hysteresis		ΔH	17% typ.	V _{CC} = 4.5 to 16 V
Response fre	quency	f	50 Hz min.	V_{CC} = 4.5 to 16 V, I_{F} = 15 mA, I_{OL} = 16mA
Response de	Response delay time		3 µs min.	V_{CC} = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, I_{OL} = 16mA
Response de	lay time	t _{PHL} (t _{PLH})	20 µs typ.	V_{CC} = 4.5 to 16 V, I_{F} = 15 mA, I_{OL} = 16mA

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are as shown right.

Photomicrosensor-Reflective - EE-SY310/410

OMRON

Terminal No.	Name
A	Anode
К	Cathode
V	Power supply V _{CC}
0	Output (OUT)
G	Ground (GND)

Dimensions	Tolerence
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

- Note: 1. "With incident light" denotes the condition whereby the light reflected by white paper with a reflection factor of 90% at a sensing distance of 4.4 mm is received by the photo IC when the forward current (I_F) of the LED is 20 mA.
 - 2. Sensing object: White paper with a reflection factor of 90% at a sensing distance of 4.4 mm.
 - 3. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC is turned from ON to OFF and when the photo IC is turned from OFF to ON.

4. The value of the response frequency is measured by

5. The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESY410.

(mA)

Ľ.

ent

2

P

NIC

VOL(V)

de

volt

utput

3

evel

NO 0.001

(sni)

t PLH

œ 5

9

Å

Current (Typical)

 $\begin{array}{c} \mathsf{V}_{CC}=5\,\mathsf{V}\\ \mathsf{R}_L=330\,\Omega\\ \mathsf{Ta}=25^\circ\mathsf{C} \end{array}$

(EE-SX3CC) (EE-SX4CC)

25

Forward current IF (mA)

Engineering Data

Note: The values in parentheses apply to EE-SY413.

Temperature Characteristics

OFF (IFT ON)

FT ON (IFT OFF

-40 -20 0 $V_{CC} = 5 V$ B₁ = 330 O

\$35

20 40

(Typical)

Ta = 25°C

CC = 5 V

Output Current (Typical)

LED Current vs. Supply Voltage (Typical)

OMRON

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

Distance d₁ (mm)

Supply voltage V_{CC} (V)

Photomicrosensor-Displacement – Z4D-B01

OMRON

Features

- Easier control enabled by built-in processor circuit.
- Resolution: ±10 µm.
- Operating area: 6.5±1 mm.
- Adapts well to changes in reflection factor using division processing.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Value	Unit	Features
Supply voltage	V _{CC}	7	VDC	-
LED pulse light emission control signal	PLS	7	VDC	LED
LED light emission pulse	tFP	100	ms	-
Operating temperature	T _{opr}	-10 to 65	°C	No freezing or condensation
Storage temperature	T _{stg}	-25 to 80	°C	-

■ Electrical and Optical Characteristics (Ta = -10°C to 65°C)

Item	Symbol	Rated value	Remarks
Supply voltage	V _{CC}	5 VDC±10%	Ripple (p-p): 10 mV p-p max.
Output voltage	OUT	0.2 VDC to (VCC-0.3) V	(see note 1)
Response time	tr	100 µs max.	(see note 2)
LED pulse light emission control signal	PLS	3.5 VDC to VCC	(see note 3)

Note: 1. Load impedance (between OUT-GND) is set at more than 10 k $\Omega.$

2. The time for output voltage to rise from 10% to 90% of the full output range.

3. Apply the voltage ranging from 3.5 V to VCC on the LED pulse light emission control signal terminal. In this case, a maximum of 2 mA (typ.1 mA) current is sunk.

OMRON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Recommended Mating Connectors:

Tyco Electronics AMP 175778-4 (crimp-type connector) 173977-4 (press-fit connector)

Pin No.	Remarks
1	PLS
2	V _{cc}
3	OUT
4	GND

official off
--

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
$18 < mm \leq 30$	±0.65
30 < mm ≤ 50	±0.8

■ Characteristics (Ta = -10°C to 65°C)

Object: N8.5 Munsell paper with a relection factor of 70%.

Pin No.	Remarks
Operating area (see note 1)	6.5 ±1 mm
Sensitivity variation (see note 2)	-1.4 mV/µm±10% max.
Resolution (see note 3)	±10 µm max. (Ta = 25°C)
Linearity (see note 4)	2% F.S. (full scale) max.

Note: 1. Distance from the mounting reference plane.

2. "Sensitivity" is defined as "inclination of divided output line" and the variation value between individual products of fluctuating divided output voltage per unit length.

Sensitivity =
$$\frac{V2 - V0}{2000}$$
 (mV/µm)

Where V0: Output voltage when d=5.5 mm

V2: Output voltage when d=7.5 mm

- d: Distance from reference mounting plane to an object.
- 3. Value of electrical noise range of divided output signal converted to distance under the following conditions.

(1) Ripple noise of power supply: 10 mV p-p max.

(2) Sampling time of the sample and hold circuit: 50 μsec

- (3) Distance to object: Distance from the reference mounting plane is 6.5 mm \pm 1 mm
 - ** When the testing conditions are deviated from the above conditions, resolution changes. For details, please consult OMRON sales representative.
- 4. The peak-to-peak value of the output error from the ideal line.
- Calculation, based on a linearity of 2% F.S., is as follows:
- (1) The conversion value based on the full scale distance: 2 mm $\,$ 0.02 = 0.04 mm (40 $\mu m)$
- (2) The conversion value based on the output voltage: 1.4 mV/ μ m 40 μ m = 56 mV
- (When the product sensitivity variation is 1.4 mV/ μm)

OMRON

Circuit Diagram

Engineering Data

Photomicrosensor-Multi-beam Sensor – EY3A-312 OINRON

Features

- Simultaneously senses three objects positioned differently, thus saving space.
- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.
- 50mm and 80mm versions available (EY3A-308 & EY3A-351)

Application Examples

Sensing of paper sizes.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Power supply voltage		V _{CC}	7 V
Output voltage		V _{OUT}	7 V
Output current		IOUT	10 mA
Ambient temperature	Operating	Topr	0°C to 65°C
	Storage	Tstg	-15°C to 70°C

Note: 1. Make sure there is no icing or condensation when operating the sensor.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item	Value	Condition
Power supply voltage	5 V ±5%	-
Current consumption	50 mA max.	$V_{CC} = 5 \text{ V}, \text{ RL} = \infty$
Peak spectral sensitivity wavelength	300 mA max.	$V_{CC} = 5$ V, RL = ∞
Low-level output voltage	0.6 V max.	$V_{\rm CC}$ = 5 V, IOL = 4 mA (see note 1)
High-level output voltage	3.5 V min.	V_{CC} = 5 V, RL = 4.7 k Ω (see note 2)
Response delay time (High to low)	35 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	20 ms max.	The time required for the output to become "Hi" after removing sensing object.

Note: 1. These conditions are for the sensing of lusterless paper with an OD of 0.6 maximum located at the correct sensing position of the Sensor as shown in the optical path arrangement on page 16.

 These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper as shown in the optical path arrangement on page 16.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Recommended Mating Connectors:

Japan Molex 51090-0500 (crimp-type connector)

52484-0510 (insulation displacement-type connector)

Unless otherwise specified, the tolerances are as shown below.

Pin No.	Remarks	Name
1	01	Output 1 (OUT1)
2	O2	Output 2 (OUT2)
3	O3	Output 3 (OUT3)
4	V	Power supply (V _{CC})
5	G	Ground (GND)

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
$18 < mm \leq 30$	±0.65
$30 < mm \le 50$	±0.8
50 < mm ≤ 80	±0.95

■ Characteristics (Paper Table Glass: t = 6 mm max., Transparency Rate: 90% min.) (Ta = 0°C to 65°C)

Item	Characteristic value	
Sensing density	Lusterless paper with an OD of 0.6 max. (sensing distance: 125 mm) (see note)	
Non-sensing distance	185 mm (from the top of the sensor), OD: 0.05	
Paper sensing distance	125 mm (from the top of the sensor)	
Ambient illumination	Sunlight: 3,000 ℓx max., fluorescent light: 2,000 ℓx max.	

Note: 1. The data shown are initial data.

2. Optical darkness (OD) is defined by the following formula:

$$CD = -log_{10} \left(\frac{P_{OUT}}{P_{IN}} \right)$$

 P_{IN} (mW): Light power incident upon the document

P_{OUT} (mW): Reflected light power from the document

Optical Path Arrangement

Engineering Data

Distance Characteristics (Estimated Lower-limit Value).

Features

- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Power supply voltage		V _{CC}	7 V
Output voltage		V _{OUT}	7 V
Output current		lout	10 mA
Ambient temperature	Operating	Topr	0°C to 65°C
	Storage	Tstg	-15°C to 70°C

Note: 1. Make sure there is no icing or condensation when operating the sensor.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item	Value	Condition
Power supply voltage	5 V ±5%	-
Current consumption	50 mA max.	$V_{CC} = 5$ V, RL = ∞
Peak spectral sensitivity wavelength	200 mA max.	$V_{CC} = 5 V, RL = \infty$
Low-level output voltage	0.6 V max.	$V_{CC} = 5$ V, IOL = 4 mA (see note 1)
High-level output voltage	3.5 V min.	V_{CC} = 5 V, RL = 4.7 k Ω (see note 2)
Response delay time (High to low)	35 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	20 ms max.	The time required for the output to become "Hi" after removing sensing object.

Note: 1. These conditions are for the sensing of lusterless paper with an OD of 0.6 maximum located at the correct sensing position of the Sensor.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper.

Note: All units are in millimeters unless otherwise indicated.

Recommended Mating Connectors:

Japan Molex 51090-0300 (crimp-type connector) 52484-0310 (insulation displacement-type connector)

Unless otherwise specified, the tolerances are as shown below.

Pin No.	Remarks	Name
1	0	Output (OUT)
2	V	Power supply (V _{CC})
3	G	Ground (GND)

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65
$30 < mm \le 50$	±0.8
50 < mm ≤ 80	±0.95

Photomicrosensor-Multi-beam Sensor – EY3A-112 OIRON

■ Characteristics (Paper Table Glass: t = 6 mm max., Transparency Rate: 90% min.) (Ta = 0°C to 65°C)

Item	Characteristic value
Sensing density	Lusterless paper with an OD of 0.6 max. (sensing distance: 125 mm) (see note)
Non-sensing distance	185 mm (from the top of the sensor), OD: 0.05
Paper sensing distance	125 mm (from the top of the sensor)
Ambient illumination	Sunlight: 3,000 lx max., fluorescent light: 2,000 lx max.

Note: 1. The data shown are initial data.

2. Optical darkness (OD) is defined by the following formula:

$$CD = -log_{10} \left(\frac{P_{OUT}}{P_{IN}} \right)$$

 PIN (mW):
 Light power incident upon the document

 POLIT (mW):
 Reflected light power from the document

Optical Path Arrangement

Engineering Data

Distance Characteristics (Estimated Lower-limit Value).

